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2. PERMUTATIONS 
 

§2.1. Shuffling a Pack of Cards 
 What we’re attempting to do when we shuffle a 

pack of cards is to put them in a random order and this 

assumes that we’re unable to keep track of what we’re 

doing. But many magicians, and no doubt many card 

sharps, learn to be in 

complete control of their 

shuffling. They carry out a 

number of basic steps in 

quick succession, each of 

which rearranges the cards. 

While each individual step has a very simple effect, the 

overall effect can be quite complicated. 

 Suppose we were able to shuffle in a very precise 

and controlled way. If we knew the initial order of the 

cards and we recorded our movements we’d be able, in 

principle, to predict the final order of the cards. But to do 

this efficiently we’d need a system of notation to describe 

the different shuffling operations. 

 A basic shuffle is to cut the deck. This means taking 

n cards off the top and putting them on the bottom. An 

experienced card shuffler is able to control the value of  n, 

without appearing to count. 
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 To keep things simple let’s work with a pack of 8 

cards, numbered 1 to 8. You should make your own pack 

and carry out the various shuffles. At the beginning of 

each shuffle or sequence of shuffles we ‘reset’ the pack 

by putting the cards in order, 1 at the top and 8 at the 

bottom. 

 Let Cn denote the operation of cutting the cards by 

taking off the top n cards and putting them on the bottom. 

The effect of each of these is as follows. 

 C1 C2 C3 C4 C5 C6 C7 

1 2 3 4 5 6 7 8 

2 3 4 5 6 7 8 1 

3 4 5 6 7 8 1 2 

4 5 6 7 8 1 2 3 

5 6 7 8 1 2 3 4 

6 7 8 1 2 3 4 5 

7 8 1 2 3 4 5 6 

8 1 2 3 4 5 6 7 

 

 Note that Cn can be achieved by repeating C1 a total 

of n times – transferring n cards in one go is no different 

to transferring them one at a time. And the simplest way 

to achieve C7 is to take the bottom card and put it on top, 

rather than take the top seven cards and putting them on 

the bottom. In fact C7 and C1 are inverses of one another. 

 Another basic shuffle is to cut the pack, assuming 

the number of cards is even, into two equal stacks. Place 

these two stacks next to one another and ruffle them so 

that they fall alternately into one stack. An experienced 
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card shuffler can do this accurately and effortlessly, so 

that the cards are exactly interleaved. The effect may look 

random but done by a professional the effect can be 

completely predictable. 

 A simpler, though less impressive, way to achieve 

this result is to alternately pick up one card from each half 

stack. But there are two variations to this shuffle, 

depending on whether the top card after the ruffle was the 

top card of the left or the 

right half pack, that is, 

whether it was the top 

card of the whole deck or 

the top card of the bottom 

half. Let’s denote these 

two shuffles by A, B respectively. 

 

 Again we’ll illustrate this for a pack of 8 cards. The 

effect of performing these ruffles is as follows: 

 A B 

1 1 5 

2 5 1 

3 2 6 

4 6 2 

5 3 7 

6 7 3 

7 4 8 

8 8 4 

 

A B
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§2.2. Multiplying Shuffles 
 There are other basic types of shuffle but these will 

do for now. We’re going to analyse the effect of 

performing a sequence of basic shuffles and what we need 

is an arithmetic of shuffles. The effect of performing one 

shuffle after another we’ll call their product. Of course 

multiplication of shuffles has nothing to do with 

multiplication of numbers, but it’s a useful analogy. 

  The fact that C3 is equivalent to doing C1 three 

times in succession can be expressed very simply by the 

equation C3 = C1
3. In fact all the cut operations can be 

expressed in terms of C1. So if we write C1 as just C, we 

can say that Cn = Cn . 

 So far we’ve considered three basic shuffling 

operations: 

 

A = interleave the top half with the bottom half so that the 

top card remains on top; 

 

B = interleave the top half with the bottom half so that the 

top card of the bottom half ends up on top; 

 

C = take the top card and put it on the bottom. 

 

 What’s the effect of doing A2B3C4? This means 

doing A twice, then doing B three times, and finally doing 

C four times. At this stage the only way you’ll be able to 

work it out is to actually perform the shuffles with your 

pack of cards. 
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 Prepare eight cards, numbered 1 to 8, and arrange 

them in order with 1 on top and 8 on the bottom. Now 

carefully perform A2B3C4. If you’ve done it correctly the 

order of the cards should now be: 7, 5, 3, 1, 8, 6, 4, 2. 

 It would be nice to be able to calculate the result 

without having to carry out the experiment. When you’ve 

learnt more about the theory of permutations you’ll be 

able to do this. 

 

 Permutations are just ways of rearranging a set of 

objects. When the objects are cards we call them 

‘shuffles’. We multiply permutations by performing them 

in succession and in some ways the multiplication of 

permutations behaves like the multiplication of numbers. 

 For numbers it is the case that (xy)z = x(yz). This is 

also true for permutations. Each of these products is 

simply the effect of doing x, then y, then z. 

 Numbers also satisfy xy = yx.  It makes no 

difference whether one multiplies 3  5 or 5  3. The 

answer is 15 in both cases. But for permutations you 

usually get a different answer if you multiply them in a 

different order. 

 To see this use your 8 cards. Put them in order. 

Now carry out operation A, then B. The final order of the 

cards should be 3, 1, 7, 5, 4, 2, 8, 6. Now return the cards 

to their original order and this time do B first and then A. 

This time 5 is on top and the order of the cards is 5, 7, 1, 

3, 6, 8, 2, 4. The two products are different: AB  BA. 
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 Permutations have to do with changing the order of 

things and, as we’ve seen, the order in which we multiply 

permutations is important. (Here I’m using the word 

‘order’ in its usual, non-technical sense. The word ‘order’ 

is used in group theory in a technical sense to describe the 

size of a group or the smallest power of an element of a 

group that produces the identity.) To illustrate this 

concept we’ll carry out another experiment with our 8 

cards. 

 Put them in their correct order and carry out the 

operation A. The order of the cards should now be 1, 5, 2, 

6, 3, 7, 4, 8. Now carry out operation A again. The cards 

should now be in the order 1, 3, 5, 7, 2, 4, 6, 8. Now carry 

out operation A for a third time. This time the cards 

should have returned to their original order: 1, 2, 3, 4, 5, 

6, 7, 8. 

 We use the symbol I to represent the permutation 

that leaves everything where it is. You might object that 

this is not really a rearrangement. But just as 0 is a very 

useful number, even though it counts nothing at all, the 

so-called identity permutation  I  is extremely useful. 

We can sum up the result of our experiment by 

saying that A3 = I. Using the word ‘order’ in its technical 

sense in group theory we can say that “A has order 3”. 

The order of a permutation is the least number of times 

you need to perform it for everything to return to its 

original position. 

 You may remember that we called the size of a 

group its order. The order of an element x is the smallest 
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positive integer n such that xn is the identity. The order of 

a group is its size. These are two different things though, 

as we will see later, they are closely related. 

 Clearly, with 8 cards, C has order 8, because when 

taking one card off the top and putting it on the bottom, 

you need to do it 8 times before everything is back where 

it started. 

 What’s the order of B? Return the deck of 8 cards 

to their original position and carry out B repeatedly. After 

three times you should still be going. It will take six 

performances of B altogether before the cards return to 

their natural order. In other words, B has order 6. 

 We’ve introduced an efficient way of representing 

complicated permutations in terms of simpler ones but as 

yet we don’t have an efficient notation for those basic 

operations. Up till now we’ve had to resort to carefully 

worded descriptions of how to carry out the permutations 

A, B and C with an actual pack of cards. What we need 

next is a compact symbolic notation to describe the effect 

of a permutation. Then we can begin to develop 

computational techniques for multiplying them. 

 

§2.3. Permutations 
 When you learnt about permutations and 

combinations you were learning to count arrangements. 

You called them ‘permutations’, and in normal life we 

call them ‘permutations’, but the correct mathematical 

term is ‘arrangement’. An arrangement of a finite set is 

a list of its elements in a particular order. A permutation 
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is an operation of changing one arrangement into another 

(or, in the case of the identity permutation, leaving the 

arrangement the same). Altogether there are n! 

arrangements of a set with n elements. 

 The 24 arrangements of the set {1, 2, 3, 4} are: 

1234 1243 1324 1342 1423 1432 

2134 2143 2314 2341 2413 2431 

3124 3142 3214 3241 3412 3421 

4123 4132 4213 4231 4312 4321 

 

 A pack of cards gives an arrangement of the set of 

52 cards. Shuffling the pack changes the arrangement. 

The card that was previously in position 1 (say, the top 

card) might now be in position 23, the card that was in 

position 2 might now be in position 42, and so on. 

 If we started with the pack in some specific order 

and took the top 10 cards and put them on the bottom – 

that is, if we cut the deck after the 10th card – we could 

record the change of arrangement as follows: 

 

card that was in 

position → 

1 2 ... 10 11 ... 52 

is now in 

position → 

43 44 ... 52 1 ... 42 

 

 This table defines a function from the set: 

S = {1, 2, 3, ... ,  52} 

to itself. If f: S→S denotes this function then f(1) = 43; 

f(2) = 44; etc. 
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 Notice that we consider the permutation as acting 

on the set of positions rather than on the set of cards. This 

is because a given shuffling operation, such as taking the 

top ten cards from the top to the bottom of the pack, is 

independent of which cards they are. The top ten cards are 

not the same every time, but the positions are. 

 Not every function on a set can describe a change 

of arrangement. For example the function given by the 

following table can’t. 

 

n 1 2 3 4 5 

f(n) 4 3 1 3 2 

 

 This is because two cards would have to occupy the 

3rd position, and no card is in 5th position even though 

there are 5 cards. 

 Only a function that’s 1-1 (different elements map 

to different elements) and onto (every element is mapped 

to) can describe a rearrangement. 

 

 A permutation on a set S is a 1-1 and onto function 

from S to itself. There are permutations on infinite sets 

(eg. the function f: ℝ → ℝ defined by f(x) = x3 is a 

permutation on ℝ, the set of real numbers) but we 

generally confine our attention to finite sets, and generally 

sets of numbers such as {1, 2, 3, ..., n}. We denote the set 

{1, 2, 3, ... , n} by [n]. 
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 Don’t confuse an arrangement with a permutation.  

An arrangement is a static thing while a permutation is 

dynamic. It is a re-arrangement, something that changes 

one arrangement to another. But since the bottom row of 

the function table of a permutation on a finite set is an 

arrangement, there are exactly as many permutations as 

there are arrangements, namely n! for a set with n 

elements. The set of all permutations on the set [n] is 

called the symmetric group of degree n and is denoted 

by Sn. 

 

§2.4. Cycle Notation 
 The simplest way to represent a permutation on a 

finite set is to set up a table of values such as: 

 

x1 x2 ... xn 

f(x1) f(x2) … f(xn) 

 

 Often this is written as: 






x1 x2 ... xn

f(x1) f(x2) ...  f(xn)
. 

For example 






1  2  3  4  5  6

 3  5  6  4  2  1
 represents a permutation, f, 

on the set [6] defined by: 

f(1) = 3; f(2) = 5; f(3) = 6; f(4) = 4; f(5) = 2; f(6) = 1. 

Starting with the arrangement 1 2 3 4 5 6 this results in 

the arrangement 6, 5, 1, 4, 2, 3 because what was 

previously in position 6 is now in position 1, what was in 

position 5 is now in position 2, and so on. 
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 Another system is to use arrows to denote the 

images of the elements, such as: 

 

1 → 3 

2 → 5 

3 → 6 

4 → 4 

5 → 2 

6 → 1 

 

A more compact system is to write them all on one line: 

1→3; 2→5; 3→6; 4→4; 5→2; 6→1. 

. 

 The order of each piece of information is irrelevant 

and so the function could have been written as: 1→ 3; 3→ 

6; 6→ 1; 2→5; 5→2; 4 →4 

or more simply as: 1→3→6→1; 2→5→2; 4→4 

 

 Here we’ve broken the permutation into disjoint 

cycles. In this example there are three cycles, of lengths 

3, 2 and 1 respectively. 

 An even more compact notation is to write it as: 

(1 3 6)(2 5)(4). 

The convention is that each symbol is mapped to the one 

on the right except the last, which is mapped to the first. 

We can make the notation more compact still by one 

further convention. If it’s clear on what set the 

permutation is operating we may omit cycles of length 1. 

So (1 3 6)(2 5)(4) can be abbreviated to just (1 3 6)(2 5). 



 66 

Any symbol that’s not present is assumed to be fixed (that 

is, mapped to itself). 

 There’s just one tiny problem with this. The 

identity function fixes every symbol and if we omitted 

cycles of length 1 we’d have a blank space! For the 

special case of the identity permutation we use the symbol 

I. 

 

Example 1: The function f: [8] → [8] defined by: 

 f(1) = 2, f(2) = 7, f(3) = 4, f(4) = 3, 

f(5) = 8, f(6) = 6, f(7) = 1, f(8) = 5 

is a permutation.  In cycle notation it’s written: 

(1 2 7)(3 4)(5 8). 

What is the corresponding arrangement if we begin with 

1, 2, 3, 4, 5, 6, 7, 8? 

 The answer is: 7, 1, 4, 3, 8, 6, 2, 5. Remember that 

if f(x) = y then what was previously in position x is now 

in position y. It does not mean that card labelled x is in 

position y. 

 

Example 2: If  f  is the permutation denoted by the cycle 

notation (1 9 4 6)(2 5 3) this means that f(9) = 4 (next on 

right), f(3) = 2 (last in cycle maps to first); f(7) = 7 

(omitted symbols are fixed). 

 

 The system of notation just described is called 

cycle notation. It reveals a good deal about the structure 

and properties of a permutation – much more easily than 

with a table of values. 
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CYCLE NOTATION RULES 

(1) The numbers represent positions not what is currently 

in that position. 

(2) Each symbol is mapped to the one on its right except 

the last in each cycle which is mapped to the first. 

(3) Fixed symbols (cycles of length 1) are omitted. 

(4) The identity permutation is denoted by I. 

 

 In addition to these rules there are some optional 

conventions. For a start, if the symbols are single digits 

we may omit the spaces between them and so write (123) 

instead of (1 2 3). 

 The same permutation can be written in several 

different ways. For example 

(12345) = (23451) = (34512) = (45123) = (51234). 

 It’s only the cyclic order that matters and so the 

symbols in any cycle may be permuted cyclically to bring 

any one of them to the front. If the symbols are positive 

integers we generally bring the smallest to the front. So, 

although it isn’t wrong to write (31254), the preferred 

notation would be (12543). 

 The cycles in the cycle notation are ‘disjoint’, that 

is, they have no symbols in common. For this reason 

they’re independent from one another and may be 

rearranged in any order (as whole blocks). For example 

(376)(18)(2549) = (2549)(18)(376) = (376)(18)(2549) 

etc. We sometimes adopt the convention that cycles are 
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arranged in order of their first symbol, writing the above 

as (18)(2549)(376). 

 

CYCLE NOTATION CONVENTIONS (Optional) 

(1) Spaces are omitted where there’s no ambiguity (eg. 

single digits). 

(2) The smallest symbol in each cycle is brought to the 

front. 

(3) The cycles in a given permutation are arranged in 

ascending order of their first symbols. 

 

 Using these optional conventions, each 

permutation has a unique description. 

 

§2.5. Cycle Structure 
 A cycle of length n is called an n-cycle. (Often 2-

cycles are called transpositions.) The cycle structure of 

a permutation is its structure as a collection of disjoint 

cycles and it’s expressed by replacing the symbols by ’s.  

(The cycle structure of I is I itself.) For example, the cycle 

structure of (15)(243)(59) is ()()(). Since we can 

no longer arrange the cycles in order of their first 

symbols, we generally arrange them in order of their 

lengths so that we would write the above cycle structure 

as ()()().   

 The cycle structure of a permutation reveals a lot 

about its properties. Permutations having the same cycle 

structure have much in common as we’ll see. Let’s now 
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use cycle structure to systematically explore the groups 

S1, S2, S3 and S4. 

 

THE SYMMETRIC GROUP S1 
 Shuffling a pack of 1 card isn’t very interesting! 

The only permutation in S1 is the identity, I. 

 

THE SYMMETRIC GROUP S2 Things aren’t much 

better with 2 cards, but at least we can swap them. 

S2 = {I, (12)}. 

 

THE SYMMETRIC GROUP S3 

 Here’s where things start to get interesting. The 

possible cycle structures are: I, () and (). With a 2-

cycle () there are 3  2 = 6 ways of replacing the ’s by 

two distinct elements of [3], namely (12), (13), (21), (23), 

(31), (32). But (21) = (12) and so on, so we only get 3 

distinct 2-cycles, not 6: (12), (13), (23). 

 Similarly while there are 3  2  1 = 6 distinct 

symbols of the form () we again get repetitions. Since 

the smallest symbol in a cycle can be brought to the front 

we must divide by 3 in this case. So there are thus just two 

3-cycles in S3 viz. (123) and (132). 

Hence S3 = {I, (12), (13), (23), (123), (132)}. 

 

THE SYMMETRIC GROUP S4 

 The possible cycle structures on 4 symbols are: 

I, (), (), () and the double 2-cycle ()(). 
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 There is of course only one identity permutation. 

We get the number of 2-cycles by considering the fact that 

there are 4  3 = 12 ways of filling in the ’s in () but 

since either symbol may be brought to the front, we must 

divide by 2. There are thus 6 cycles of length 2. The 

number of 3-cycles is 
4  3  2

3
 = 8 and there are 

4  3  2  1

4
 = 6 cycles of length 4. 

 

 The calculation is slightly more complicated when 

we come to the double 2-cycles. There are 4! = 24 ways 

of replacing the ’s by symbols in ()(). Of course we 

must divide by 2 for each 2-cycle to take account of the 

fact that (a b) = (b a). But, in addition, we must divide by 

a further factor of 2 because of the fact that 

(a b)(c d) = (c d)(a b). 

The number of double 2-cycles is thus: 
4  3  2  1

2  2  2
 = 3. 

As a check we note that 1 + 6 + 8 + 6 + 3 = 24. 

The elements of S4 are thus: 

 
I (12) (13) (14) (123) (132) 

(12)(34) (23) (24) (34) (124) (142) 

(13)(24) (1234) (1324) (1423) (134) (143) 

(14)(23) (1243) (1342) (1432) (234) (243) 
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§2.6. The Prisoner Problem 
 There’s a curious problem that’s recently been 

drawn to my attention. It’s based on the simple fact that 

every permutation is a product of cycles. 

 There were ten prisoners in one large cell. Each had 

his prison number tattooed on his arm. One day the prison 

warden came to them and offered them a chance to be 

released. 

 

 “I’m going to offer you the chance of freedom. In 

the next room there are ten boxes, numbered from 0 to 9. 

There are ten cards each containing a different digit and 

each card will be randomly put into one of the boxes.” 

 “Tomorrow morning each of you will come, one at 

a time, and you’ll be allowed to open any five of the 

boxes. If you find the card that contains the last digit of 

your prison number you’ll be given a green card. 

Otherwise you’ll get a red card.” 

 “After you’ve received your card you’ll be sent to 

another room so that you can’t communicate with those 

that are left. Once you’ve all been given a card the 

outcome will be as follows. If everybody has a green card 

you’ll all be released. But if one or more has a red card, 

you’ll all be shot!” 

 That night they discussed what their chances were 

of being released. 

 “It’s pretty hopeless,” said one of them. “We each 

have one chance in two of finding our own card. But for 
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all ten of us to find our own card the probability is less 

than one in a thousand. We’re all going to die!” 

 “Not necessarily,” said another prisoner. “I happen 

to have studied group theory and I can suggest a way that 

will improve our chances dramatically.” 

 “It’s worth trying. What would be our chances if 

we followed your strategy?” 

 “Only about one in three, I’m afraid. But it’s a lot 

better than one in a thousand.” 

 “So what do we have to do?” asked another. 

 “When you go into the next room tomorrow, look 

for the box with the last digit of your prisoner number. 

Open that box and the card inside will give you the 

number of the next box to open. Keep going until you 

return to the box you started with. The card that took you 

there will have your own digit. You’ll get a green card.” 

 “Yes, but what if I look in five boxes and still don’t 

find my number. I’d have to stop.” 

 “And they’d give you a red card and we’d all be 

executed.” 

 “And what’s the chance of that?” 

 “About two in three. So even with my strategy 

we’d only have about one chance in three of getting out 

alive.” 

 “That’s worse than choosing randomly where it’s 

one in two.” 

 “Ah, but this probability won’t depend on our 

choices. It will depend on how the cards have been 
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allocated. You won’t have to multiply one third ten 

times.” 

 “How so?” 

 “Well the cards in the boxes give a permutation on 

the ten digits. Now every permutation is a product of 

cycles. Suppose that all the cycles have length five or less. 

Then everybody will get back to their own card by 

opening no more than five boxes. In that case we’ll all get 

a green card and we’ll all go free.” 

 “And if there’s a cycle of length six? Somebody’s 

number is sure to be in that cycle and, if we follow your 

strategy, he’ll not get back to his own number by opening 

only five boxes. It only takes one person to get a red card 

and we’ll all be shot.” 

 “Well, I’ve worked out the probabilities and the 

probability of there being a cycle of length six or larger is 

about two in three. So that gives us a chance of about one 

in three of getting out of here alive!” 

 “But what if two of us have the same last digit?” 

 “That would make no difference. If there were no 

cycles of length six or more we’d all get a green card, 

even if we all had the same last digit.” 

 So they decided to follow the group-theorist’s 

strategy and amazingly they all got green cards and were 

released. 

 “Even though the odds were still against us we still 

won with a probability of one in three. There must be a 

God,” said one of them later. 
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 Perhaps God was looking after them, though not in 

the way they had imagined. You see there were two prison 

guards assigned to the task of setting up the room and they 

decided to divide the cards into two groups. One had the 

numbers 0 to 4 and he said to the other guard, “you put 

yours in the back row and I’ll put mine in the front. The 

prisoners won’t notice that it’s not completely random.” 

 Now the boxes in the front row were numbered 0 

to 4 and so the guards unwittingly ensured that there were 

no cycles longer than five. 

 

 Here’s the mathematics behind the probabilities. 

Without a strategy the probability of each prisoner getting 

a green card would be ½. So the probability of them all 

getting green cards would be (½)10 = 1/1024. 

 

 The distribution of the cards gives a permutation, 

, on {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0}. 

The number of cycles of length n is: 

10.9….(10−n+1)

n
 = 

10!

n(10−n)!
  

with the reason for dividing by n being the fact that every 

cycle of length n can start at any of its n digits. The 

number of permutations containing a cycle of length n is:  
10!

n(10−n)!
  (10−n)! = 

10!

n
  since the remaining 10 − n 

digits can be permuted in (10 − n)! ways. 

 Let Pn be the probability of  containing a cycle of 

length n. If  was indeed random, as promised, then 
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Pn = 
10!/n

10!
 = 

1

n
 . 

So the probability of  containing a cycle of length at least 

six is 
1

6
  + 

1

7
  + 

1

8
  + 

1

9
  + 

1

10
  0.6456. 

 So if the cards had been distributed randomly the 

probability of all the prisoners being released would be 

approximately 1 − 0.6456 = 0.3544, which would have 

given them a fighting chance. But the careless of the 

guards increased this probability to 1! 

 

§2.7. Definition of Multiplication 
 The product of two permutations f, g on a set S is 

the composition of the two functions in the order ‘first f 

then g’. 

 Note that the usual convention with composition is 

to multiply in reverse order, first g then f. So (fg)(x) = 

f(g(x)), where fg denotes the resulting function. In the 

context of permutations we write the composite as fg and 

define it to mean that we first apply f and then g. 

 

(f ° g)(x) = f(g(x)) while (fg)(x) = g(f(x)). 

 

 The convention for composition results from the 

fact that we normally write functions on the left as f(x), 

not (x)f and the definition of composition seems more 

natural. The f°g notation and the accompanying 

convention is widely used in analysis but the left-to-right 
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convention of fg is more widespread in abstract algebra 

and it’s the one we’ll use here. 

 

Permutations multiply in the order in which they are 

written, from left to right. 

   

 If we’re given two permutations in cycle notation 

and we want to multiply them, we can first convert them 

to arrow diagrams, erase the centre column and combine 

each pair of arrows into a single one. Then all we have to 

do is to convert back to cycle notation.  

 

Example 3: 

Suppose a = (14)(256) and b = (13465). 

Then ab = (162)(34). 

                 a             b                                         ab 

1                     1                  1                      1                1 

2                     2                  2                      2                2 

3                     3                  3         =           3                3 

4                     4                  4                      4                4 

5                     5                  5                      5                5 

6                     6                  6                      6                6 

 

 But while arrow pictures can assist us when we first 

learn to multiply permutations they’re bulky and clumsy. 

It’s better that we learn to multiply permutations directly 

using cycle notation. 
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 Numbering the 27 cubes in a Rubik’s Cube 

systematically, F = (1 3 9 7)(2 6 8 4), 

U = (1 19 21 3)(2 10 20 12), 

FU = (1 19 21 3 9 7)(2 6 8 4 10 20 12 2) and (FU)6 = I 

 

 

 

 

 

 

 

 

§2.8. Permutation Multiplication 

Algorithm 
 The easiest way to describe the algorithm is to use 

it on a particular example and explain in detail what we’re 

doing. 

(14)(256)  (13465) = (162)(34) 

 

THINK WRITE 

1 is the first symbol in the first cycle (1 

1→4 by the first permutation then 4→6 

by the second so 1→6 

(16 

6→2 and then 2→2 (absent so fixed) so 

6→2 

(162 

2→5 and then 5→1 so 2→1 completing 

the cycle 

(162) 

3 is smallest symbol not yet used (162)(3 

1 
2 

3 4 
5 

6 7 
8 

9 

1 
2 

3 

10 
11 

12 

19 
20 

21 
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3→3 (absent so fixed) then 3→4 (162)(34 

4→1 then 1→3 completing another cycle (162)(34) 

5 is the smallest not yet used but looking 

ahead we see that it’s fixed so we leave it 

out 

(162)(34) 

all symbols are accounted for so stop (162)(34) is 

the answer 

 

Here’s a second example with a more abbreviated 

explanation: 

 

             (1463)(587)  (1374628) = (1675)(284) 

THINK WRITE 

(1463)(587)  (1374628) (16 

(1463)(587)  (1374628) (167 

(1463)(587)  (1374628) (1675 

(1463)(587)  (1374628) (1675) 

new cycle  

(1463)(587)  (1374628) (1675)(28 

(1463)(587)  (1374628) (1675)(284 

(1463)(587)  (1374628) (1675)(284) 

 

Example 4: 

 The following is the multiplication table for S3, the 

group of permutations on 3 symbols: 
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 I (123) (132) (12) (13) (23) 

I I (123) (132) (12) (13) (23) 

(123) (123) (132) I (23) (12) (13) 

(132) (132) I (123) (13) (23) (12) 

(12) (12) (13) (23) I (123) (132) 

(13) (13) (23) (12) (132) I (123) 

(23) (23) (12) (13) (123) (132) I 

 

§2.9.  Powers of Permutations 
 To raise a permutation to the m’th power using 

cycle notation, simply jump forward,  m  steps at a time.  

(Wrap around if you go past the end of a cycle.) 

 Thus (x1 x2 ... xn)
m = (x1 xm+1 x2m+1  ... ) 

 

Example 5: If a = (1426537) then a² = (1257463). 

Think of this as: 

1→4→2, 

2→6→5, 

5→3→7, 

7→(wrap around)1→4, 

4→2→6, 

6→5→3, 

3→7→1(wrap around). 

Then ignore the intermediate stage. 
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Example 6: 

If a  = (123456789) then     a2 = (135792468) 

    a3 = (147)(258)(369)       a4 = (159483726) 

    a5 = (162738495)             a6 = (174)(285)(396) 

    a7 = (186429753)             a8 = (198765432) 

    a9 = I. 

 

 Carefully examine the pattern. For example, with 

a3 we jump in steps of size 3. By the time we come to a7 

we see that it’s equivalent (and easier) to count back 2 

steps each time rather than 7 steps forward. 

 Clearly a10 = a, a11 = a2 etc. 

 

The inverse of  a = (x1 x2 ... xm)(y1 y2 ... yn) ... is 

                       a−1 = (x1 xm ... x2)(y1 yn ... y2) ... 

We begin each cycle at the same point as before but go 

around in the reverse order. 

 

Example 7: 

The inverse of (16243)(579) is (13426)(597) 

For all permutations aa−1 = I = a−1a. This is because a−1 

undoes whatever  a  achieves. 

 

§2.10.  Order of a Permutation 
The order of a permutation a, is the smallest positive 

integer  n  such that an = I. 

 

Example 8: The order of (162) is 3.  More generally, the 

order of an n-cycle is n. 
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 The order of (12)(345) is 6 because for its n’th 

power to be the identity, n must be both even (to ‘kill off’ 

the 2-cycle) and a multiple of 3 (to ‘kill off’ the 3-cycle).  

The smallest positive integer that is both even and a 

multiple of 3 is 6, so the order of (12)(345) is 6.  Note that 

the order of (12)(3456) is 4, not 8. 

 Having explored these examples we can easily 

supply the proof of the following theorem. 

 

Theorem 1:  The order of a permutation is the least 

common multiple of the lengths of its cycles. ☺ 

 

§2.11.  Conjugates 
 If  a, b are permutations on the same set then the 

conjugate of  a  by  b  is defined to be  b−1ab  and is 

denoted by  ab. 

 Note that b−1ab = a if and only if ab = ba. So if two 

permutations commute, conjugating one by the other 

doesn’t change it. 

 

Example 9: 

If a = (123)(45) and b = (16243) then 

   ab = b−1ab = (13426).(123)(45).(16243) = (164)(35). 

 Notice that the permutation and its conjugate have 

the same cycle structure. This is in fact always the case as 

can be seen from the following theorem. 
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Theorem 2:  The conjugate of a = (x1 x2 ... xn) ... by b is 

c = ab = (b(x1) b(x2) ... b(xn)) ... 

Note: we simply replace each symbol in the cycle 

notation for a by its image under b. 

Proof: We’ll show that  ab = bc  from which it follows 

that b−1ab = c. Now 

ab(x1) = b(a(x1)) = b(x2) and bc(x1) = c(b(x1)) = b(x2). 

Thus ab and bc have the same effect on the symbol x1. 

Similarly they have the same effect on any symbol in the 

cycle notation for a. 

 If  z  is any other symbol then it’s fixed by  a  and 

so ab(z) = b(a(z)) = b(z). Since z is not present in the cycle 

notation for c it’s fixed by c and so 

bc(z) = c(b(z)) = b(z). 

 We’ve thus shown that  ab  and  bc  behave 

identically on all symbols and so ab = bc. ☺ 

Corollary: Two permutations are conjugate if and only if 

they have the same cycle structure. 

 This theorem enables us to calculate conjugates 

more easily than by carrying out the two multiplications. 

To conjugate a by b we simply replace each symbol in the 

cycle notation for a by its image under b. 

 

Example 10:  If a = (16)(275)(3948) and 

                           b = (1724)(369), then 

                         ab  = (79)(425)(6318) = (1863)(254)(79). 

 

 Another application of this theorem is to find 

conjugating permutations. 
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Example 11:  If a = (17)(2685) and c = (1672)(35) find b 

such that b−1ab = c. 

Solution: We write the two permutations underneath one 

another so that the cycle lengths correspond. 

                      a = (17)(2685) 

                      c = (35)(1672) 

We then look for a permutation that sends 1→3, 7→5, 

2→1, 6→6, 8→7 and  5→2.  The remaining symbols 3 

and  4 are mapped to the remaining possible images 4 and 

8. We could map 3→4 and 4→8 or 3→8 and 4→4. 

Suppose we choose the latter. Then b = (138752). 

 

 There are generally several possibilities for b. 

Apart from the choice of images for 3 and 4 above we 

could have written c as (53)(6721) in which case we 

would want b to send 1→5, 7→3, 2→6 etc. 

 

Example 12: If a = (25)(1473) and c = (46)(275) find b 

such that b−1ab = c. 

Solution: No such b exists since  a  and  c  have different 

cycle structures. 

 

 Because conjugates have the same cycle structure, 

they must have the same order. If a has order  n  then b−1ab 

has order n. 

 

§2.12. Permutations in Poetry 
 Modern poetry, like modern music, seems to thumb 

its nose at rules. But in the golden age of poetry there were 
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complicated rhyming schemes and patterns that made 

writing poetry more like a piece of engineering than a 

creative task. 

 One of the most complicated poetic formats ever to 

be devised is the sestina. It seems to have originated 

around the twelfth century, but it’s still being written. 

 A sestina consists basically of six stanzas, each 

with six lines. Instead of a rhyming scheme, each line 

ends in one of six words. These six words occur at the end 

of each line in all six stanzas, but in a different order. The 

order is determined by the permutation (124536). To 

conclude the sestina there’s a short three line stanza, 

called the ‘envoy’, where the six words occur in the 

middle and the end of the lines in a different order again. 

 Rudyard Kipling, the author of the Jungle Book, 

wrote a sestina called Sestina of the Tramp-Royal where 

the lines end with the words ‘all’, ‘world’, ‘good’, ‘long’, 

‘done’ and ‘die’, permuted from one stanza to the next. 

 

Speakin’ in general, I ’ave tried ’em all— 
The ’appy roads that take you o’er the world. 
Speakin’ in general, I ’ave found them good 
For such as cannot use one bed too long, 
But must get ’ence, the same as I ’ave done, 
An’ go observin’ matters till they die. 
 
What do it matter where or ’ow we die, 
So long as we’ve our ’ealth to watch it all — 
The different ways that different things are done, 
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An’ men an’ women lovin’ in this world; 
Takin’ our chances as they come along, 
An’ when they ain’t, pretendin’ they are good? 

 
In cash or credit—no, it aren’t no good; 
You ’ave to ’ave the ’abit or you’d die, 
Unless you lived your life but one day long, 
Nor didn’t prophesy nor fret at all, 
But drew your tucker some’ow from the world, 
An’ never bothered what you might ha’ done. 
 
But, Gawd, what things are they I ’aven’t done? 
I’ve turned my ’and to most, an’ turned it good, 
In various situations round the world — 
For ’im that doth not work must surely die; 
But that's no reason man should labour all 
’Is life on one same shift — life’s none so long. 
 
Therefore, from job to job I’ve moved along. 
Pay couldn’t ’old me when my time was done, 
For something in my ’ead upset it all, 
Till I ’ad dropped whatever ’twas for good, 
An’, out at sea, be’eld the dock-lights die, 
An’ met my mate — the wind that tramps the world! 

 
It’s like a book, I think, this bloomin’ world, 
Which you can read and care for just so long, 
But presently you feel that you will die 
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Unless you get the page you’re readin’ done, 
An’ turn another—likely not so good; 
But what you’re after is to turn ’em all. 

 
Gawd bless this world! Whatever she ’ath done— 
Excep’ when awful long I’ve found it good. 
So write, before I die, ‘’E liked it all!’ 

 

§2.13. Ringing the Changes 
 You’ve no doubt heard bells ringing out from 

church towers or cathedrals, even if only in films, and you 

probably haven’t given much thought to what’s going on. 

You may have been 

vaguely aware that 

sometimes the bells play 

recognisable tunes but that 

more often they play 

abstract music. 

 If you hear a tune then 

you can be pretty sure that 

what you’re listening to is 

a carillion, where the bells are controlled from a 

keyboard, or perhaps a recording of a carillon. If the 

rhythm seems regular but the notes appear random you’re 

probably hearing English change ringing the musical 

equivalent of permutations. (If both the notes and the 

rhythm sound really random, with bells clashing 
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discordantly you’re probably listening to continental 

ringing, or perhaps very bad change-ringing.) 

 Change ringing doesn’t in fact involve random 

sequences, though to the untrained ear they may appear 

random. In the tradition of English change ringing the 

sequences are generated with mathematical precision. 

 The conventions of English change ringing (the 

style we hear in Australia) are a result of the way the bells 

are hung and the laws of physics. 

 You must understand that the normal rest position 

for bells in the English style is with the mouth uppermost. 

Each bell is attached to a wheel and a rope goes over the 

wheel and drops down to the ringing chamber below. 

Here you’ll find, if you’re able to go up into a church 

tower, a team of ringers standing around in a circle, 

pulling on the ropes. Each ringer controls just one bell, 

and that’s a full time occupation! The upper end of the 

rope goes round a large wheel connected to a huge bell 

weighing many times more than the ringer himself. 

 By pulling on the rope the wheel turns and the bell 

rotates a full 360 degrees. During the swing the clapper 

strikes the bell and the note is heard. It takes about two 

seconds for the bell to go full circle and it’s physically 

impossible to make the bell swing much more quickly 

than this without superhuman effort. And the only way to 

make it swing more slowly is to hold it poised, balanced 

in the mouth up position, and that’s very difficult to do 

for more than a second. 
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 This rules out tunes, unless they’re played at a tenth 

of their normal speed because most tunes have some notes 

twice in quick succession. So, 

instead of tunes, change 

ringers ring permutations. 

Change ringing means 

ringing all the bells in some 

order followed by the same 

bells in a different order. 

Because of the physical 

difficulty of changing the 

natural time of the swing, a particular bell can’t change its 

position in the sequence by very much each time. In fact 

there are normally only three possibilities. It can ring in 

the same position as before, or one position earlier, or one 

position later. This means that one or more pairs of bells 

swap places. 

 Of course this needs coordination. You can’t have 

two bells politely saying to each other “no you go next”, 

“no please, you go first”. It all has to be tightly controlled. 

And this is done by the conductor who is himself one of 

the ringers. 

 It would be totally unworkable if the conductor had 

to schedule every single interchange, especially as they 

have to also control their own ‘mighty beast’. So what has 

grown up over the centuries are ‘methods’. These the 

ringers learn. A method takes you through maybe a dozen 

changes in a predetermined way. But every so often the 

pattern comes to a point where a call can be made. At 



 89 

these points the conductor may call out “bob” or “single” 

which means that a different interchange is used from 

what would normally be the case. So the ringers follow a 

set pattern, appropriate to the method, but at certain stages 

they have to be on their toes (sometimes quite literally) 

ready for a ‘bob’ or a ‘single’ to be called. 

 A ‘bob’ and a ‘single’ are special permutations that 

are used to join together blocks of changes. Does the 

conductor call one of these whenever he or she feels like 

it? No it’s more complicated than that and here’s where 

the mathematics comes in. There’s a convention in 

English change ringing that a given arrangement should 

never be repeated. Not just immediately following, but 

never in the same piece of ringing! 

 There’s no aesthetic reason why a change that 

occurs now shouldn’t occur again in half an hour’s time. 

The listeners down in the street wouldn’t notice. It’s done 

that way because that’s the way it’s always been done. 

There’s a pride in getting it right. 

 Who keeps the score and cries foul if and when a 

change is repeated? Usually the pattern of bobs and 

singles is written out in advance. And it’s been known for 

a band of ringers in a bell-ringing competition to be 

disqualified after a couple of hours ringing because 

someone has proved on paper that the ‘composition’ must 

have repeated a change, whether or not anyone noticed at 

the time! 

 A full peal on 8 bells consists of 5040 changes and 

this takes over 3 hours. During this time the seven lighter 
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bells are rung in every one of the 7! = 5040 different 

arrangements with no repetitions. The heaviest bell, the 

tenor, stays in last place as a sort of ‘full-stop’. A quarter 

peal runs through exactly one quarter of this number, 

again with no repetitions. 

 To be a really good bell-ringer you need a good 

knowledge of permutations. (Incidentally, if you’re dying 

to show off the fact that you know that the technical term 

for a bell ringer is ‘campanologist’ don’t! Not to a bell-

ringer. Bell-ringers never use the term and if you use it 

you’ll make it clear that you’re not one of them.) Yet 

while you get the occasional mathematician or computer 

programmer in the bell-ringing fraternity, ringers are on 

the whole a pretty normal cross-section of the community. 

For centuries village churches in England have had their 

tower bells rung by uneducated farm labourers and 

shepherds who would have scratched their heads if you 

mentioned “1-1 and onto functions”. Their knowledge of 

permutations is confined to the context of their craft but 

within that context their knowledge may be very highly 

developed. 

 Let’s consider one of the simplest methods, Plain 

Bob Doubles on 6 bells, with the heaviest bell (the tenor) 

coming last in each change. Only the ‘front’ 5 bells are 

permuted so a full peal will consist of 5! = 120 changes. 

This will only take about 4 minutes and the method is 

rarely performed on so few bells. 

 The method consists of alternately applying the 

permutations a = (12)(34) and b = (23)(45). Ringers have 
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different ways of remembering what they should do but 

this is what it amounts to. 

 The ringers will begin by ringing ‘rounds’ many 

times. This is where the bells are rung in order 1, 2, 3, 4, 

5, 6 from the highest to the lowest. The repetition at this 

stage doesn’t count. When the band has settled into a nice 

rhythm the conductor will call “go Bob Doubles”. The 

ringers follow the system they’ve learnt which amounts 

to  ababab... 

 Now ab = (13542) which has 

order 5. So after 10 changes the 

bells would come back to rounds 

without having gone through all 

120 permutations. Changing the 

order of the a’s and b’s wouldn’t 

help either because the group 

generated by  a  and  b  is the 

dihedral group of order 10. To 

avoid this premature repetition the conductor might insert 

a ‘bob’ in place of the fifth b. The bob for this method is 

c = (34). This causes the ringing to go off on another track 

of a new 10 changes. 

 So if a bob is called at the end of each set of 10 

changes the pattern will correspond to the sequence 

(ab)4ac(ab)4ac... 

 But (ab)4ac = (12453)(12) = (2453) so after 4 lots 

of this pattern of 10 changes we’d come back to rounds 

prematurely. So before this happens the conductor will 

call ‘single’, which is a different permutation again. 
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 Bell-ringing is in no danger of dying out as in the 

last seventy or eighty years there has been a resurgence of 

interest in bell ringing around the world, and especially in 

Australia. There are now 64 towers in Australia capable 

of English bell ringing, 50 in the USA, 7 in NZ and many 

hundreds in the UK. 

 They’re generally willing to show visitors how it’s 

done. Contact the church or, if the door is open at the 

bottom of the tower when they’re ringing, go on up. But 

if all the ringers are occupied ringing, don’t even think of 

interrupting them! And don’t expect to be able to have a 

go yourself. It’s quite difficult and even dangerous for an 

untrained person to just ring a single note. If you don’t 

apply the correct tension the rope could fly about all over 

the place. Even if you’re willing to ‘learn the ropes’ it 

would be several months before you’d be allowed to do it 

on your own. 

 

§2.14. Disorder and Sorting 
 An inversion of a permutation  on the set [n] is a 

pair of numbers whose order is reversed by , that is pairs  

(i, j) where i < j but (i) > (j). 

 The disorder of a permutation  on [n] is () = 

the number of its inversions. It’s a measure of how mixed 

up the arrangement 1 2 3 ... n becomes after the 

permutation has been applied. The disorder of the identity 

permutation is 0. 

If the sequence is totally reversed and becomes 

n, n − 1, ... , 2, 1, 
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the disorder is ½ n(n −1) since every one of the pairs is 

out of order. For all   Sn,  0  ()  ½ n(n −1). 

 

Example 13: Let  = (135)(24). This changes 12345 into 

54123. (What was previously in position 5 is now in 

position 1, etc.) There are 7 inversions: (1,4), (1,5), (2,4), 

(2,5), (3,4), (3,5), (4,5) so () = 7. For example, (1,5) is 

an inversion because 1 comes before 5 in 12345 but 5 

comes before 1 in 54123. 

 

 Apart from the identity, the permutations with the 

smallest disorder are those which swap two adjacent 

symbols and fix all the rest. These have disorder 1 and are 

transpositions of the form si = (i  i+1). They’re called 

simple transpositions. 

 

Theorem 3: For all permutations  and all simple 

transpositions si, ( (si)) = ()  1 

Proof: Suppose (a) = i and (b) = i + 1. 

If a < b then (a, b) is an inversion for ( (si)) but not for 

 and hence ( (si)) = () + 1. 

Similarly if a > b ( (si)) = () − 1. ☺ 

 

 There are many algorithms for sorting arrays of 

data on a computer. One of the simplest is known as 

Bubble Sort. It’s not the most efficient of the sorting 

algorithms, though it’s not too bad. What it has going for 

it is that it’s extremely simple to describe and, more 
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importantly for us, it gives us an important theoretical 

result. 

 The name Bubble Sort arises from the fact that 

‘lighter’ elements (those that come earlier in the 

ordering), bubble up to the top as we continue to swap a 

number with the one immediately above it until they all 

reach their proper position. 

  

BUBBLE SORT 

To sort a set: 

(1) FOR all i < n, IF the i’th and (i +1)’st are out of order 

THEN swap them. 

(2) IF a swap was made, GOTO (1) and do it again. 

Otherwise END. 

 

Example 14: BUBBLE SORT on 34521: 

34521→34251→34215→32415→32145→23145 

→21345→12345 (7 swaps). 

 

Theorem 4: A permutation  is the product of () 

simple transpositions and no fewer. 

Proof: Each swap in Bubble Sort reduces the disorder by 

1. ☺ 

 

The following table gives the disorder of all the elements 

of S4. Note that exactly half have even disorder while the 

rest have odd disorder. 
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EVEN DISORDER  ODD DISORDER 

 ()   () 

I 0  (12) 1 

(123) 2  (13) 3 

(132) 2  (14) 5 

(124) 4  (23) 1 

(142) 4  (24) 3 

(134) 4  (34) 1 

(143) 4  (1234) 3 

(234) 2  (1243) 3 

(243) 2  (1324) 5 

(12)(34) 2  (1342) 3 

(13)(24) 4  (1423) 5 

(14)(23) 6  (1432) 3 

 

§2.15. Odd and Even Permutations 
 The parity of a permutation  is: 

P() = () (mod 2). 

If P() = 0 we say that  is an even permutation. 

If P() = 1 we call  an odd permutation. 

 

Theorem 5: P(ab) = P(a) + P(b) (mod 2). 

Proof: Let b = t1 ... tk be a factorisation into k = (b) 

simple transpositions. (See Theorem 4.) 

Then  (ati) = (a)  1 and so 

           P(ati) = P(a) + 1 (modulo 2). 

Hence P(ab) = P(a) + k (mod 2) 

                     = P(a) + P(b). ☺ 
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Corollary: Inverses have the same parity as each other. 

Proof: aa−1 = 1 so if a and a−1 had opposite parity then I 

would have odd parity. 

 

 This theorem shows that odd-ness and even-ness of 

permutations behave under multiplication like odd and 

even numbers under addition.  That is: 

 

 

 The fact that even  even is even, the inverse of an 

even permutation is even and the identity permutation is 

even means that the set of even permutations is a group 

under permutation multiplication. We call this group the 

alternating group of degree n and denote it by An. It is 

a subgroup of Sn. Note that A1 = {I} = S1. 

 

Example 15: 

A4 = {I, (123), (132), (124), (142), (134), (143), (234), 

(243), (12)(34), (13)(24), (14)(23)} 

 

Theorem 6: Conjugates have the same parity as each 

other. 

Proof:  P(g−1hg) = P(g) + P(h) + P(g) = P(h) (mod 2). 

  

even  even = even 

 even  odd = odd 

 odd  even = odd 

  odd  odd = even 
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Corollary: Transpositions are odd. 

Proof: 

They’re conjugate to the simple transposition (12). ☺ 

 

Theorem 7: A cycle of length n is a product of  n − 1  

transpositions. 

Proof: (x1 x2 ... xn) = (x1 x2)(x1 x3) ... (x1 xn). 

Corollary: Cycles of odd length are even and cycles of 

even length are odd. ☺ 

 

Example 16: (123456) is odd since its length is even; 

(123)(45)(6789) is even  [even  odd  odd] 

 

Theorem 8: If n > 1 exactly half the permutations in Sn 

are even. 

Proof: The map → (12) is a 1-1 correspondence 

between the even and odd permutations so there’s the 

same number of each. ☺ 

Corollary: If n > 1, the order of An is ½ n! 

  

§2.16. Permutation Puzzles 
 The Rubik’s™ Cube, one of the most famous 

puzzles of all time, is just one of a class of puzzles that 

involve permutations. The common feature is that there 

are several pieces to be rearranged in a certain pattern by 

a sequence of basic moves. In many of these puzzles the 

engineering dictates what’s possible while in others the 

limitations are imposed by rules. 
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 As a very simple puzzle consider the following. 

Arrange 5 coins, one each of 5¢, 10¢, 20¢, $1 and $2, in 

a row in ascending order of value from left to right. The 

allowable moves are: 

(1) swap the coins at each end; 

(2) move the left-most coin to the right hand end. 

The goal is to reverse the order of the coins. 

 This puzzle is not hard to solve without 

mathematics but let’s analyse it using permutations. We 

can label the five coins 1, 2, 3, 4, 5 and the problem is to 

go from the arrangement 12345 to 54321. The 

permutation that does this is g = (15)(24).  This is our goal 

permutation. The allowable moves can also be expressed 

as permutations. Swapping the two ends is a = (15) while 

moving the left-hand coin to the right is b = (15432). The 

puzzle is solved once you have expressed  g  in terms of  

a  and  b. 

 Now as can be verified, ab2abab4ab3 = (15)(24) = 

g. Never mind for now how we might find such a 

sequence. The fact is that it’s a sequence of a’s and b’s 

that achieves the goal. So if the coins are arranged in the 

order 12345 and we carry out the basic moves according 

to the recipe  abbababbbbabbb  we obtain the required 

reversal. Use 5 coins, or five small scraps of paper, to 

verify that this is indeed so. 

 Now I’m not claiming that this represents the 

shortest solution. Perhaps you can find a shorter one by 

trial and error. But at least this solution can be found by a 
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systematic procedure that I’ll explain now in the context 

of another puzzle. 

 

§2.17. The Shunting Puzzle 
 In a certain shunting yard there’s a loop of track. 

On one side of the loop there’s a turntable. This turntable 

can only operate with four carriages. It isn’t big enough 

to accommodate more than four and for some mysterious 

reason (imposed to keep the puzzle from becoming 

trivial) it will not operate with fewer than four carriages. 

 On this loop of track there’s a train consisting of an 

engine followed by six carriages and a guard’s van at the 

end. The engine and guard’s van each count as a carriage 

for the purpose of the turntable rule. 

 The problem is to interchange the engine and the 

guard’s van while keeping the six carriages between them 

in the same order. This must be done only using the loop 

of track and the turntable. Any number of carriages can 

be taken around the loop at any time and the turntable can 

be operated at any time so long as it has exactly four 

pieces of rolling stock on it. 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 
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 This may not sound like a problem that’s likely to 

arise in real life but there are some situations which 

require a similar analysis but which are rather more 

complicated to describe. You can simulate this puzzle by 

sticking little labels on eight coins. The turntable can be 

simulated by putting four fingers on four adjacent coins 

and rotating. You may wish to attempt to solve the puzzle 

before proceeding with the mathematical analysis. 

 For convenience I use the symbols 2, 3, 4, 5, 6, 7 to 

represent the six carriages with 1 representing the engine 

and 8 the guard’s van. The initial arrangement is 

12345678 and the arrangement we have to achieve is 

82345671. The goal permutation is thus G = (18). 

 Now there are two basic operations at our disposal. 

We can take one carriage from the left-hand side of the 

train around the loop to the right-hand side. (We shall 

consider the engine and guard’s van as carriages). 

 This operation corresponds to the permutation L = 

(18765432) since the carriage that was previously in 

position 1 ends up in position 8 and so on. Everything that 

can be achieved with just the loop can be expressed in 

terms of L. For example, taking a number of carriages 

around at the same time is equivalent to taking them one 

by one and so is expressible as a power of L. Taking a 

carriage from the right-hand end around to the left is just 

L−1. 

 The turntable gives an additional basic move. Let 

T = (14)(23). Don’t forget that these symbols here refer 

to the positions, not the numbers of the carriages that 
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occupy them, and we can agree to number the positions 

starting with the four on the turntable. Removing the 

mathematically irrelevant setting of the puzzle we can 

express it very simply as: 

 

Generate G = (18) in terms of 

L = (18765432) and T = (14)(23). 

 

Our goal is to generate a particular 2-cycle. But let’s start 

by trying to generate any 2-cycle. 

 Begin by randomly multiplying L’s and T’s 

together in a trial-and-error fashion. The product TL = 

(13)(48765). Now this isn’t our goal, nor is it even a 2-

cycle. But notice that because it’s a transposition times a 

5-cycle, we can remove the 5-cycle by raising TL to the 

fifth power:  (TL)5 = (13). 

 Of course we were lucky to hit upon a permutation 

of the right shape so quickly.  There’s a certain amount of 

trial-and-error in the method. But its advantage over 

completely mindless trial-and-error is that we widen our 

goal from a specific permutation to a whole class of 

permutations. 

 We still have to get from this 2-cycle (13) to (18), 

the one we want. We do this by conjugation. Remember 

that conjugation preserves the cycle structure. So 

conjugating (TL)5 by any permutation gives a 2-cycle. Of 

course the conjugating permutation would need to be 

expressible in terms of T and L. 
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 So we need to find a permutation, expressible in 

terms of T and L, that takes 1 to 1 and 3 to 8. (Or we could 

instead find one that takes 1 to 8 and 3 to 1.) 

 We’ll keep to the first case. We need a permutation 

that fixes 1. Neither T nor L by themselves fix 1. But 

notice that T takes 1 to 4 and L3 takes 4 back to 1 so TL3 

= (285)(3746) fixes 1. But it doesn’t send 3 to 8. Not even 

some power of it sends 3 to 8 because 3 and 8 are in 

different cycles. Never mind, we might find another 

possibility. 

 Notice that (TL)2 fixes 1. In fact (TL)2 = (47586). 

Does this send 3 to 8? No, 3 and 8 are again in different 

cycles. Remember 3 is fixed so it is in a cycle by itself. 

 So neither TL3 = (285)(3746) nor (TL)2 = (47586) 

separately do what we want – but together they can. 

(TL3)−1 sends 3 to 6 and (TL)−2 sends 6 to 8. So we get 

from 3 to 8 by ‘changing trains’ at 6. 

 The product of these permutations is (TL3)−1(TL)−2 

= (2738). This fixes 1 and sends 3 to 8 and most 

importantly, it’s generated by T and L. We simply 

conjugate (TL)5 by (TL3)−1(TL)−2 and this will produce a 

T-L expression for our goal. 

 So (18) = [(TL3)−1(TL)−2]−1 (TL)5 [(TL3)−1(TL)−2] 

                       = (TL)2(TL3) (TL)5(TL3)−1(TL)−2 

                       = (TL)2(TL3) (TL)5L−3T−1L−1T−1 L−1T−1 

                       = (TL)2(TL3) (TL)5L5TL7T L7T 

                       = TLTLTL3TLTLTLTLTLL5TL7TL7T. 
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 Convince yourself that it works by labelling eight 

coins and carefully performing this recipe. As I said 

before it may not be the shortest solution, but it is a 

solution. And although it involved a certain amount of 

trial-and-error it was intelligent trial-and error! 

 

 I have been using this 

example for several decades in 

my online notes and I like to think 

that the following manufactured 

puzzle was inspired by mine. This 

one has 20 ‘carriages’. The turntable rule is dictated by 

the design rather than simply as an arbitrary rule, because 

there is only just enough space around the loop to 

accommodate the 20 discs and so it’s only possible to 

operate the turntable if it contains 4 discs. 

 

§2.18. The 15-Puzzle 
 Another example of a puzzle where the basic 

moves are dictated by the 

mechanism is the so-called 

15-puzzle. I can’t take credit 

for this one because I 

remember it as a schoolboy 

in the 1950s! A square tray 

contains 15 small tiles, 

numbered from 1 to 15, 

arranged in a 4  4 array with 

one spot empty. The tiles can 
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slide horizontally or vertically into the empty position. 

The goal is to get a particular pattern. 

 Because the pieces are slotted into each other they 

can’t be removed from the frame so the only allowable 

moves are those that are physically possible by sliding the 

tiles into the empty place. What are they? 

 Clearly there are four basic moves L, R, U and D 

where: 

L = move a tile left into the empty space, 

R = right, 

U = up and 

D = down. 

 

 Various patterns were set as goals. For example if 

the square is in some random starting configuration the 

goal might be to obtain the numbers in order as in the 

illustration. Of course the solution will depend on the 

starting pattern, but it should be possible to express the 

recipe as a long sequence of L’s R’s U’s and D’s. 

 What are these moves as permutations? Sliding a 

tile in effect swaps that tile and the empty space next to it 

and this suggests we should be treating it as a 

transposition (). The trouble is that we have to permute 

positions, not tiles, and so we can’t treat the empty space 

as a dummy tile. The transposition (12) can’t be achieved 

if both positions are currently occupied – only if one of 

them is empty. Obviously this sort of conditionality is 

unworkable. 
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 The way around this dilemma is to have the empty 

space return to the bottom-right corner from time to time 

and to record the permutation only at these stages. We are 

therefore considering permutations on the remaining 15 

positions. 

 So while we can’t consider L by itself as such a 

permutation, the sequence RDLU can be. It rotates the 

three tiles surrounding the bottom-right corner and gives 

the permutation A = (11 15 12). Now it’s clear that 

essentially the only basic moves that are possible are to 

rotate the tiles around a rectangle that has the blank in the 

bottom-right corner. These will be cycles of odd length 

and so will be even permutations. So only even 

permutations are possible. Engraved on the back of these 

little plastic puzzles were some patterns to achieve. But 

there was one pattern marked IMPOSSIBLE. The reason 

why it was impossible is that it would require an odd 

permutation. Of course we boys soon discovered how to 

snap the tiles out of the frame using a pen knife and 

reassemble them to the impossible pattern! 

 I remember that the first Rubiks cubes has stick-on 

labels for the colours and my young son ‘solved’ the 

puzzle very quickly. Unfortunately he wasn’t all that neat 

in sticking the labels back on and so it was pretty obvious 

how he had solved it. 

 

The key to solving most permutation puzzles is to 

generate permutations that end up fixing most of the tiles. 

A very useful way of doing this to use commutators. 
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These are expressions of the form X−1Y−1XY. The name 

reflects the fact that X and Y commute if and only if their 

commutator is the identity. 

With the 15-puzzle, rotating the tiles around the 

bottom right-hand 2  2 square gives the permutation A = 

RDLU = (11 15 12). Although R, D, L and U are not 

permutations as such note that this is the commutator 

L−1U−1LU.   Another useful rotates the tiles anticlockwise 

around the bottom two rows. It is B = (LLL)−1U−1(LLL)U. 

= (9 13 14 15 12 11 10). This may not seem very useful 

permutation, but wait. If we calculate C = A−1B−1AB we 

get C = (10 15)(11 12). 

 So we somehow get the right tiles to occupy 

positions 11 and 12. Then, if we conjugate C by 

permutations that fix 11 and 12 we can easily rearrange 

the other tiles. The tiles in positions 11 and 12 will just 

swap back and forth. If the pattern is possible the tiles in 

those positions will automatically be the right way round. 

If every other tile is in the right place but those in 

positions 11 and 12 are the wrong way round this will 

mean that the pattern is impossible. 
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EXERCISES FOR CHAPTER 2 
 

Exercise 1: Write the following permutations in cycle 

notation: 

(a) 1→3, 2→4, 3→5, 4→1, 5→2; 

(b) 1→4, 2→5, 3→3, 4→2, 5→1; 

(c) 1→2, 2→4, 3→5, 4→1, 5→3; 

(d) 1→1, 2→5, 3→3, 4→4, 5→2; 

(e) 1→1, 2→2, 3→3, 4→4, 5→5; 

(f) 1→2, 2→1, 3→3, 4→5, 5→4. 

 

Exercise 2: Which of the following is not a permutation? 

(a) 1→3, 2→4, 3→2, 4→1; 

(b) 1→1, 2→4, 3→3, 4→1; 

(c) 1→3, 2→2, 3→1, 4→4. 

 

Exercise 3: Which of the following permutations is 

different to the other two. 

(a) (1428)(375); 

(b) (1824)(573); 

(c) (753)(2814). 

 

Exercise 4: Write down all of the permutations in S5 with 

each of the following cycle structures: 

(a) (); (b) (); (c) ()(); 

 

Exercise 5: Write down all of the cycle structures in S6 

together with the number of each. 



 108 

[Do not list the permutations themselves.  There are too 

many!] 

 

Exercise 6: Perform the following permutation 

multiplications: 

(a) (132)  (13);           (b) (1423)  (1342); 

(c) (12)(34)  (123);    (d) I  (1253);    (e) (12)  (34). 

 

Exercise 7: Find the inverse of the following 

permutations: 

(a) (154)(263);    (b) (17246)(35); 

(c) I;                    (d) (12)(34)(56);            (e) (15)(2354). 

 

Exercise 8: If a = (253)(46) and b = (126) calculate the 

following: 

(a) ab;          (b) (ab)−1; 

(c) a−1;         (d) b−1; 

(e) a−1b−1;     (f) b−1a−1. 

 

Exercise 9: Write down the orders of the following 

permutations: 

(a) (12345);              (b) (12345)(78); 

(c) (123456)(78);      (d) (12)(34)(56)(78);        (e) I; 

(f) (15)(2354). 
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Exercise 10: In each of the following cases find the order 

of ab: 

(a) a = (123), b = (12); 

(b) a = (123), b = (45); 

(c) a = (123), b = (14); 

(d) a = (123), b = (12)(34); 

(e) a = (123)(456), b = (34)(56); 

(f) a = (123)(456)(789), b = (34)(67). 

[Note that in all cases,  a  has order 3 and  b  has order 2 

yet the order of  ab  is different in all five cases.  This 

shows that there is no connection between the order of a 

product and the orders of its factors – unless the factors 

involve disjoint cycles.] 

 

Exercise 11: Prove that there is no upper bound to the 

order of the product of a permutation of order 3 with a 

permutation of order 2. 

 

Exercise 12: Find the largest order for any of the elements 

of S10. 

 

Exercise 13: If a = (1234)(567) find the order of each of 

the following: 

(a) a−1;    (b) a2;    (c) a3;    (d) a4;    (e) a5. 

 

Exercise 14: Find ab = b−1ab in each of the following 

cases (use the shortcut to conjugate): 

(a) a = (12), b = (2345); 

(b) a = (13)(256), b = (23)(45); 
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(c) a = (14)(25), b = (1325); 

(d) a = (1325), b = (14)(25); 

(e) a = (156), b = (156). 

 

Exercise 15: Where possible find a permutation 

b  S6 such that ab = c in each of the following cases: 

(a) a = (132)(45), c = (15)(234); 

(b) a = (14)(23), c = (16)(24)(35); 

(c) a = (12)(34), c = (13)(24); 

(d) a = (14), c = I; 

(e) a = (13), c = (13). 

 

Exercise 16: Express each of the following permutations 

as a product of transpositions (cycles of length 2): (a) 

(15624);     (b) (2546)(357);     (c) I. 

 

Exercise 17: Which of the following are even 

permutations? (a) (123456789);  (b) (123456)(789); 

(c) (123)(4567)(89); (d) (12)(345)(67)(89); 

(e) (123)(456)(789). 

 

Exercise 18: Express g = (123)(456) in terms of 

a = (12) and b = (23456). 

 

Exercise 19: Express g = (259)(37) in terms of 

a = (12) and c = (123456789). 
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Exercise 20: 

(i) If a = (142357) and b = (25) (47) find ab, a2, and 

b−1ab. 

           Prove that the group generated by a, b is the 

dihedral group of order 12. 

(ii)      If a denotes the set of powers of a (this is called 

the cyclic subgroup generated by a), find the 

elements of a. 

(iii) If a = (123) (56) find the elements of a  A6. 

(iv) If a = (14) (253) and b = (123) (45) then find all the 

even permutation x  A5 such that 

                                            a = x−1bx. 

(v) If a = (12453), b = (23) and c = (123) then express 

c in terms of a, b. 

            [HINT: Write c = (231) = (23)(21) = (23)(12).] 

 Prove that neither a nor b can be expressed in terms 

of the other two. 

 

Exercise 21: Where possible, solve the following 

modified versions of the shunting puzzle.  In each case 

the term ‘carriage’ includes the engine and guard’s van: 

(a) 6 carriages, 4 on the turntable; 

(b) 5 carriages, 4 on the turntable; 

(c) 7 carriages, 3 on the turntable. 

(d) 8 carriages, 3 on the turntable. 

[HINT: for (d): consider the algebraic expression 

E = x1 x3 x5 x7 + x2 x4 x6 x8.] 
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Exercise 22: Take eight coins and label them the letters 

DEARGRAN.  Starting with the coins in this order and 

using the two basic operations of the shunting yard 

problem, obtain the arrangement ARRANGED. 

 

Exercise 23: Solve the following permutation puzzle: 

7 6 5 

 hole 4 

1 2 3 

 Start with seven coins and a grid of nine squares as 

indicated in the following diagram: 

 

Seven of the eight outside squares are each occupied by a 

coin and the middle square represents a hole. The coins 

may move around the edge of the hole, or a coin may 

‘jump over the hole’. Jumping over the hole must be done 

in a straight line only, either vertically or horizontally into 

the empty square. The object of the puzzle is to produce 

the arrangement: 

 

1 2 3 

 hole 4 

7 6 5 
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SOLUTIONS FOR CHAPTER 2 
 

Exercise 1: (a) (13524); (b) (1425); (c) (124)(35); (d) 

(25); (e) I; (e) (12)(45). 

 

Exercise 2: (b) is not because both 1 and 4 map to 1 (not 

1-1) and nothing maps to 2 (it is not onto). 

 

Exercise 3: (a) = (c) (they only look different because the 

cycles start in different places) but (b) is different since 

under (b) 1→8 while under (a) and (c) 1→4. In fact (b) is 

the inverse of the other two. 

 

Exercise 4: 

(a) (12), (13), (14), (15), (23), (24), (25), (34), (35), (45); 

(b) (1234), (1235), (1243), (1245), (1253), (1254), 

(1324), (1325), (1342), (1345), (1324), (1325), 

(1423), (1425), (1432), (1425), (1432), (1435), 

(1523), (1524), (1532), (1534), (1542), (1543), 

(2345), (2354), (2435), (2453), (2534), (2543); 

(c) (12)(34), (12)(35), (12)(45), (13)(24), (13)(25), 

(13)(45), (14)(23), (14)(25), (14)(35), 

(15)(23), (15)(24), (15)(34), (23)(45), (24)(35), 

(25)(34). 

Note carefully that these elements have been listed in a 

systematic order. This makes it much easier to ensure that 

there are no duplicates, and more importantly, that 

nothing has been left out.  In each position we write down 

the smallest possibility that remains. You should also 
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count the number of permutations of each type and see if 

you could have predicted that from the systematic 

ordering. 

 

Exercise 5: 

Cycle structure (): There are 6 possibilities for the 

first position and 5 remaining ones for the 2nd position, 

giving 6  5 = 30 possibilities. But each will have been 

counted twice since (xy) = (yx). So there are 15 

permutations with this cycle structure. 

 

Cycle structure (): There are 6  5  4 possible ways 

of filling up the places but each occurs 3 times so the 

number of permutations is 
6  5  4

3
  = 40. 

Cycle structure ()(): There are 
6  5  4  3  2

2  3
  

= 120 permutations with this structure.  We divide by 2 

for the 2-cycle and by 3 for the 3-cycle. 

Cycle structure ()(): There are 
6  5  4  3

2  2  2
  = 45 

permutations of this type. We divide by 2 for each cycle 

and we need to divide by 2 a third time to allow for the 

fact that we’ll have still counted each permutation twice 

by virtue of the fact that (ab)(cd) = (cd)(ab). 

Cycle structure ()()(): There are 

6  5  4  3  2  1

2  2  2  6
  = 15 of these. As well as dividing 
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by 2 for each of the 2-cycles we need to divide by 3! = 6 

to take account of the fact that the three 2-cycles can be 

permuted in any order without changing the permutation. 

The following table gives all possible cycle structures and 

the number of permutations of each type. 

 

cycle structure calculation number 

I 1 1 

() 65

2
  

15 

() 654

3
  

40 

() 6543

4
  

90 

() 65432

5
  

144 

() 654321

6
  

120 

()() 65432

42
  

90 

()() 654321

332
  

40 

()() 65432

32
  

120 

()() 6543

222
  

45 

()()() 654321

2226
  

15 

TOTAL  720 
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Exercise 6: (a) (23); (b) (124); (c) (134); (1253); (e) 

(12)(34). 

 

Exercise 7: (a) (145)(236); (b) (16427)(35); (c) I; (d) 

(12)(34)(56); (e) (15324). This is a trick question since 

(15)(2354) is not cycle notation for a single permutation 

because the cycles aren’t disjoint. Rather it’s the product 

of two permutations and must first be simplified. 

(15)(2354) = (14235) so the inverse is (15324). 

 

Exercise 8: (a) (125364); (b) (146352); (c) (235)(46); (d) 

(162); (e) (164235); 

(f) (146352). Note that (ab)−1 = b−1a−1. This is always the 

case. 

 

Exercise 9: (a) 5; (b) 10; (c) 6; (d) 2; (e) 1; (f) 5. This is 

a trick question because the cycles aren’t disjoint. When 

simplified this permutation becomes (14235). 

 

Exercise 10: (a) 2; (b) 6; (c) 4; (d) 3; (e) 5; (f) 9 

 

Exercise 11: (123)(456) … (3n−2 3n−1 3n) 

                                       (34)(67)(9 10) … (3n−3 3n−2)  

= (1 2 4 5 7 … 3n−2 3n−1 3n 3n−3 3n−6 … 3) which has 

order 3n. 

 

Exercise 12: 30. [Consider the cycle structure 

()()().] 
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Exercise 13: (a) 12;  (b) 6;  (c) 4;  (d) 3;  (e) 12. 

 

Exercise 14: (a) (13);  (b) (12)(346); 

(c) (34)(51) = (15)(34);  (d) (4352) = (2435); 

(e) (156). 

 

Exercise 15: (a) (124);  (b) none;  (c) (23);  (d) none;  (e) 

I.  (Other answers are possible.) 

 

Exercise 16: (a) (15)(16)(12)(14); 

(b) (25)(24)(26)(35)(37);  (c) (12)(12) (in fact I can be 

considered as a product of zero transpositions). 

 

Exercise 17: (a), (c), (e) are even. The others are odd. 

 

Exercise 18: g = (12)(13)(45)(46). 

Now (12) = a, (13) = ab, (45) = (14)(15)(14) 

  = ab2
ab3

ab2
, (46) = (14)(16)(14) = ab2

ab4
ab2

 so 

g = a b−1ab b−2ab2 b−3ab3 b−2ab2 b−2ab2 b−4ab4 b−2ab2 

    = ab−1ab−1ab−1ab−3ab2ab2 

 

Exercise 19: g = (25)(29)(37). 

Let d = ca = (23456789). Then (13) = ad, (14) = ad2
, etc  

Now (25) = (12)(15)(12) = a ad3
 a, 

         (29) = (12)(19)(12) = a ad−1
 a, 

         (37) = (13)(17)(13) 

                = ad ad−3
 ad. 

So  g = ad−3ad3a adad−1a d−1add3ad−3d−1ad 
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         = ad−3ad3a2dad−1ad−1ad4ad−4ad 

         = a(ca)−3a(ca) 3a2ca2(ca)−1a(ca)−1a(ca)4a(ca)−4aca 

         = aa−1c−1a−1c−1a−1c−1acacaca a2ca2a−1c−1acacacaca 

                                             aa−1c−1a−1c−1a−1c−1a−1c−1 aca 

        = c−1a−1c−1a−1c−1acacaca3cac−1acacacacac−1a−1c−1 

                                                                                                a−1c−1a−1c−1aca 

        = c−1ac−1ac−1acacaca3cac−1acacacacac−1ac−1ac−1 

                                                                                       ac−1aca since a2 = I. 

 

Exercise 20: 

(i) ab = (17)(23)(45), a2 = (125)(374), b−1ab = (175324) 

= a−1 so the group generated by a, b is the dihedral group 

of order 12 (note that  a  has order 6 and  b  has order 2). 

 

(ii) a = {I, (142357), (125)(374), (13)(27)(45), 

               (152)(347), (175324)}. 

 

(iii) The element a is itself odd, and so all its odd powers 

will also be odd.  However its even powers, 1, a2 and a4 

will all be even, so a  A6 = {I, a2, a4}. 

 

(iv) Writing a = (14)(253) and b = (45)(123) we might 

consider the permutation (1452). This conjugates b into a 

but it is odd, not even. There are altogether 6 ways of 

writing b: 

b = (45)(123) = (45)(231) = (45)(312) = (54)(123) 

   = (54)(231) = (54)(312) giving rise to just the 

following possibilities for x: 

(1452), (1453), (145)(23), (152), (153), (15)(23). 
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Just the last 3 of these are even, so there are three 

possibilities for  x: (152), (153), (15)(23). 

 

(v) c = (23)(12). We have to now express (12) in terms of 

a, b. We’ll conjugate b by something suitable to get (21). 

Such a permutation would fix  2  and send  3  to 1. But, of 

course, it must be expressible in terms of  a, b.  Now  ab 

= (13)(245) so (ab)3 = (13) does exactly what we want. 

This means that  (ab)−3b(ab)3 = (12) and so 

c = b(ab)−3b(ab)3. 

 Why can’t a be expressed in terms of b, c? Simply 

because both b, c fix 4 and 5 and so any combination of 

them would have to do likewise. But a  doesn’t fix them. 

 And why can’t  b  be expressed in terms of  a  and  

c? The answer in this case is that both a and c are even 

permutations, and so anything built up from them would 

also have to be even, while b is odd. 

 

Exercise 21: 

(a) a = (123456), b = (14)(23).  Goal = (16). 

Now  ab = (13)(456) so (ab)3 = (13). 

We want to conjugate this to (16) and so we want a 

permutation that fixes 1 and sends 3 to 6. Now a3 maps 1 

to 4 and 4 maps 4 back to 1 so a3b = (2536) fixes 1. Well, 

what do you know? It also sends 3 to 6. 

So (a3b)−1(ab)3a3b = (16). 

 

(b) a = (12345), b = (14)(23).  Goal = (15). 

This is impossible since both  a, b are even. 
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(c) a = (1234567), b = (13).  Goal = (17). We want to 

conjugate (13) to (17) and so we want a permutation that 

fixes 1 and sends 3 to 7. Now ab = (12)(34567) and so 

(ab)2 = (35746) fixes 1. It doesn’t map 3 to 7, but its 

square does. So (ab)−4b(ab)4 = (17). 

 

(d) This is impossible, though the reason has nothing to 

do with odd and even permutations.  

Consider the algebraic expression E = x1 x3 x5 x7 + x2 x4 x6 

x8. Both permutations a, b leave the value of E unchanged 

and therefore it will be unchanged by anything generated 

by them. But the goal permutation, applied to the 

subscripts of E, would change it into 

x8 x3 x5 x7 + x2 x4 x6 x1 which certainly is different to E. 
 

Exercise 22: 

For convenience put 1 = D, 2 = E, 3 = A, 4 = R, 5 = G, 6 

= R, 7 = A, 8 = N. Our goal permutation is g = 

(185627)(34), although (185427)(36) would do just as 

well because of the two R’s. We have to express this in 

terms of a = (12345678) and b = (14)(23). 

Now ab = (13)(45678) so (ab)5 = (13). We can conjugate 

this to produce other 2-cycles. 

Our goal permutation can be expressed as g = 

(18)(15)(16)(12)(17)(34). Even this last can be expressed 

in a similar form by writing (34) = (13)(14)(13), so 

g = (18)(15)(16)(12)(17)(13)(14)(13). 

Of course, (13) is just b. We want permutations that 

fix 1. Now (ab)2 = (46857) is one such, but it doesn’t map 
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3 to anything other than itself. Note that under a3, 1 → 4 

and b sends this back to 4. Hence a3b = (258)(3647) fixes 

1 and is a little more useful when it comes to 3. It maps 3 

to 6, its inverse maps 3 to 7 and its square maps 3 to 4. 

Hence (16) = (a3b)−1(ab)5a3b,  (17) = a3b (ab)5 

(a3b)−1 and (14) = (a3b)−2(ab)5(a3b)2. 

For (18), (15) and (12) we need to use a combination of 

a3b and (ab)2. 

Now a3b sends 3 to 6 and (ab)2 sends 6 to 8 (both fix 1) 

so a3b(ab)2 conjugates (13) to (18). 

Hence (18) = (a3b(ab)2)−1 (ab)5 a3b(ab)2. 

Similarly a3b sends 3 to 6 and (ab)4 sends 6 to 5 so 

a3b(ab)4 conjugates (13) to (15). 

Hence (15) = (a3b(ab)4)−1 (ab)5 a3b(ab)4. 

The cycle (12) is a little more difficult, but we can use 

(ab)2 and a3b to get 3 to 2. We first map 3 to 6 by a3b then 

go from 6 to 8 by (ab)2 and finally use a3b again to move 

8 to 2. Hence (12) = [a3b(ab)2a3b]−1(ab)5 [a3b(ab)2a3b]. 

Putting this all together we get: 

g = [(a3b(ab)2)−1 (ab)5a3b(ab)2] [(a3b(ab)4)−1(ab)5 

a3b(ab)4] [(a3b)−1(ab)5a3b]  

      [(a3b(ab)2a3b)−1(ab)5(a3b(ab)2a3b)] [a3b (ab)5 (a3b)−1] 

b [(a3b)−2(ab)5(a3b)2] b. 
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Exercise 23: 

Let R = (1234567), moving the pieces around the outside 

 let J = (1234), jumping over the hole.  (After each move 

we move he pieces so that the empty square reverts to its 

original position.) 

The goal is: 

g = (17)(26)(35) = (17)(12)(16)(12)(13)(15)(13). 

Now RJ = (13)(24567) so (RJ)5 = (13). 

We want permutations that fix 1. 

Of course (RJ)2 = (25746) fixes 1 and so does 

R2J2 = (35746). Using these together we can map 3 to 7, 

2, 6 etc. 

(17) = (R2J2)−2(RJ)5(R2J2)2; 

(12) = ((R2J2(RJ)−2)−1(RJ)5(R2J2(RJ)−2; 

(16) = (R2J2)(RJ)5(R2J2)−1; 

(13) = (RJ)5; 

(15) = (R2J2)−1(RJ)5R2J2. 

Hence g = [(R2J2)−2(RJ)5(R2J2)2]  

[((R2J2(RJ)−2)−1(RJ)5(R2J2(RJ)−2] [(R2J2)(RJ)5(R2J2)−1]  

                 [((R2J2(RJ)−2)−1(RJ)5(R2J2(RJ)−2]  

                                  [(RJ)5] [(R2J2)−1(RJ)5R2J2 (RJ)5]. 

 


