2. PERMUTATIONS

§2.1. Shuffling a Pack of Cards

What we’re attempting to do when we shuffle a
pack of cards is to put them in a random order and this
assumes that we’re unable to keep track of what we’re
doing. But many magicians, and no doubt many card
sharps, learn to be in TR
complete control of their
shuffling. They carry out a
number of basic steps in
quick succession, each of
which rearranges the cards.
While each individual step has a very simple effect the
overall effect can be quite complicated.

Suppose we were able to shuffle in a very precise
and controlled way. If we knew the initial order of the
cards and we recorded our movements we’d be able, in
principle, to predict the final order of the cards. But to do
this efficiently we’d need a system of notation to describe
the different shuffling operations.

A basic shuffle is to cut the deck. This means taking
n cards off the top and putting them on the bottom. An
experienced card shuffler is able to control the value of n,
without appearing to count.

L
A
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To keep things simple let’s work with a pack of 8
cards, numbered 1 to 8. You should make your own pack
and carry out the various shuffles. At the beginning of
each shuffle or sequence of shuffles we ‘reset’ the pack
by putting the cards in order, 1 at the top and 8 at the
bottom.

Let C, denote the operation of cutting the cards by
taking off the top n cards and putting them on the bottom.
The effect of each of these is as follows.

C, C C3 C4 Cs Cs¢ Cy
2 |3 |4|5]|6]|7]8

coO~NOoO Ol bk WwhNPE
RN O AW
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OB (WIN|[F[00 |
(OB (W[N]
N[OOI WIN(F-

Note that C,, can be achieved by repeating C; a total
of n times — transferring n cards in one go is no different
to transferring them one at a time. And the simplest way
to achieve C; is to take the bottom card and put it on top,
rather than take the top seven cards and putting them on
the bottom. In fact C; and C; are inverses of one another.

Another basic shuffle is to cut the pack, assuming
the number of cards is even, into two equal stacks. Place
these two stacks next to one another and ruffle them so
that they fall alternately into one stack. An experienced
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card shuffler can do this accurately and effortlessly, so
that the cards are exactly interleaved. The effect may look
random but done by a professional the effect can be
completely predictable.

A simpler, though less impressive, way to achieve
this result is to alternately pick up one card from each half
stack. But there are two variations to this shuffle,
depending on whether the top card after the ruffle was the
top card of the left or the
right half pack, that is,
whether it was the top
card of the whole deck or
the top card of the bottom
half. Let’s denote these
two shuffles by A, B respectively.

AN
[l
7

A B

Again we’ll illustrate this for a pack of 8 cards. The
effect of performing these ruffles is as follows:
B

oO~NoOUTh~AWNPRE
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§2.2. Multiplying Shuffles

There are other basic types of shuffle but these will
do for now. We’re going to analyse the effect of
performing a sequence of basic shuffles and what we need
is an arithmetic of shuffles. The effect of performing one
shuffle after another we’ll call their product. Of course
multiplication of shuffles has nothing to do with
multiplication of numbers, but it’s a useful analogy.

The fact that Cs is equivalent to doing C; three
times in succession can be expressed very simply by the
equation C3 = C;3. In fact all the cut operations can be
expressed in terms of C;. So if we write C; as just C, we
can say that C, =C".

So far we’ve considered three basic shuffling
operations:

A = interleave the top half with the bottom half so that the
top card remains on top;

B = interleave the top half with the bottom half so that the
top card of the bottom half ends up on top;

C = take the top card and put it on the bottom.

What’s the effect of doing A2B3C*? This means
doing A twice, then doing B three times, and finally doing
C four times. At this stage the only way you’ll be able to
work it out is to actually perform the shuffles with your
pack of cards.
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Prepare eight cards, numbered 1 to 8, and arrange
them in order with 1 on top and 8 on the bottom. Now
carefully perform A2B3C*. If you’ve done it correctly the
order of the cards should now be: 7,5, 3, 1, 8, 6, 4, 2.

It would be nice to be able to calculate the result
without having to carry out the experiment. When you’ve
learnt more about the theory of permutations you’ll be
able to do this.

Permutations are just ways of rearranging a set of
objects. When the objects are cards we call them
‘shuffles’. We multiply permutations by performing them
in succession and in some ways the multiplication of
permutations behaves like the multiplication of numbers.

For numbers it is the case that (xy)z = x(yz). This is
also true for permutations. Each of these products is
simply the effect of doing x, then y, then z.

Numbers also satisfy xy = yx. It makes no
difference whether one multiplies 3 x 5 or 5 x 3. The
answer is 15 in both cases. But for permutations you
usually get a different answer if you multiply them in a
different order.

To see this use your 8 cards. Put them in order.
Now carry out operation A, then B. The final order of the
cards should be 3, 1,7, 5, 4, 2, 8, 6. Now return the cards
to their original order and this time do B first and then A.
This time 5 is on top and the order of the cards is 5, 7, 1,
3,6, 8,2, 4. The two products are different: AB = BA.
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Permutations have to do with changing the order of
things and, as we’ve seen, the order in which we multiply
permutations is important. (Here I'm using the word
‘order’ in its usual, non-technical sense. The word ‘order’
is used in group theory in a technical sense to describe the
size of a group or the smallest power of an element of a
group that produces the identity.) To illustrate this
concept we’ll carry out another experiment with our 8
cards.

Put them in their correct order and carry out the
operation A. The order of the cards should now be 1, 5, 2,
6, 3, 7, 4, 8. Now carry out operation A again. The cards
should now be in the order 1, 3,5, 7, 2, 4, 6, 8. Now carry
out operation A for a third time. This time the cards
should have returned to their original order: 1, 2, 3, 4, 5,
6,7, 8.

We use the symbol | to represent the permutation
that leaves everything where it is. You might object that
this is not really a rearrangement. But just as 0 is a very
useful number, even though it counts nothing at all, the
so-called identity permutation 1 is extremely useful.

We can sum up the result of our experiment by
saying that A% = I. Using the word ‘order’ in its technical
sense in group theory we can say that “A has order 3”.
The order of a permutation is the least number of times
you need to perform it for everything to return to its
original position.

You may remember that we called the size of a
group its order. The order of an element x is the smallest
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positive integer n such that x" is the identity. The order of
a group is its size. These are two different things though,
as we will see later, they are closely related.

Clearly, with 8 cards, C has order 8, because when
taking one card off the top and putting it on the bottom,
you need to do it 8 times before everything is back where
it started.

What’s the order of B? Return the deck of 8 cards
to their original position and carry out B repeatedly. After
three times you should still be going. It will take six
performances of B altogether before the cards return to
their natural order. In other words, B has order 6.

We’ve introduced an efficient way of representing
complicated permutations in terms of simpler ones but as
yet we don’t have an efficient notation for those basic
operations. Up till now we’ve had to resort to carefully
worded descriptions of how to carry out the permutations
A, B and C with an actual pack of cards. What we need
next is a compact symbolic notation to describe the effect
of a permutation. Then we can begin to develop
computational techniques for multiplying them.

§2.3. Permutations

When you learnt about permutations and
combinations you were learning to count arrangements.
You called them ‘permutations’, and in normal life we
call them ‘permutations’, but the correct mathematical
term is ‘arrangement’. An arrangement of a finite set is
a list of its elements in a particular order. A permutation
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IS an operation of changing one arrangement into another
(or, in the case of the identity permutation, leaving the
arrangement the same). Altogether there are n!
arrangements of a set with n elements.
The 24 arrangements of the set {1, 2, 3, 4} are:

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

A pack of cards gives an arrangement of the set of
52 cards. Shuffling the pack changes the arrangement.
The card that was previously in position 1 (say, the top
card) might now be in position 23, the card that was in
position 2 might now be in position 42, and so on.

If we started with the pack in some specific order
and took the top 10 cards and put them on the bottom —
that is, if we cut the deck after the 10th card — we could
record the change of arrangement as follows:

card that was in| 1 | 2 | .. |10]|11] .. |52
position —
IS now in 43144 | ... |52 1 | .. |42
position —

This table defines a function from the set:
S={1,2,3,.., 52}
to itself. If f: S—S denotes this function then f(1) = 43;
f(2) = 44; etc.
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Notice that we consider the permutation as acting
on the set of positions rather than on the set of cards. This
Is because a given shuffling operation, such as taking the
top ten cards from the top to the bottom of the pack, is
independent of which cards they are. The top ten cards are
not the same every time, but the positions are.

Not every function on a set can describe a change
of arrangement. For example the function given by the
following table can’t.

n [ 1] 2 3] 4 |5
fmy[ 4 | 3 | 1 | 3 | 2

This is because two cards would have to occupy the
3rd position, and no card is in 5th position even though
there are 5 cards.

Only a function that’s 1-1 (different elements map
to different elements) and onto (every element is mapped
to) can describe a rearrangement.

A permutation onaset Sisa 1-1and onto function
from S to itself. There are permutations on infinite sets
(eg. the function f: R — R defined by f(x) = x® is a
permutation on R, the set of real numbers) but we
generally confine our attention to finite sets, and generally
sets of numbers such as {1, 2, 3, ..., n}. We denote the set
{1, 2,3,...,n} by [n].
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Don’t confuse an arrangement with a permutation.
An arrangement is a static thing while a permutation is
dynamic. It is a re-arrangement, something that changes
one arrangement to another. But since the bottom row of
the function table of a permutation on a finite set is an
arrangement, there are exactly as many permutations as
there are arrangements, namely n! for a set with n
elements. The set of all permutations on the set [n] is
called the symmetric group of degree n and is denoted
by S.

§2.4. Cycle Notation

The simplest way to represent a permutation on a
finite set is to set up a table of values such as:

X1 X2 Xn
f(x1) [ f(x2) | ... | f(Xn)
- . . X]_ X2 es Xn
Often this is written as: (f(xl) £(xo) ... f(Xn)].

123456 :
For example(3 564 2 1) represents a permutation, f,
on the set [6] defined by:

f(1) = 3; f(2) = 5; 1(3) = 6; f(4) = 4; f(5) = 2; f(6) = 1.
Starting with the arrangement 1 2 3 4 5 6 this results in
the arrangement 6, 5, 1, 4, 2, 3 because what was
previously in position 6 is now in position 1, what was in
position 5 is now in position 2, and so on.
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Another system is to use arrows to denote the
images of the elements, such as:

1—->3
2—5
3—>6
4 -4
552
6—>1

A more compact system is to write them all on one line:
1-53; 2—5; 3—6; 4—4; 5-2; 6->1.

The order of each piece of information is irrelevant
and so the function could have been written as: 1— 3; 3—
6;6—>1;2-55;5-52;4 >4
or more simply as: 1>3—6—1; 2—>5—-2; 44

Here we’ve broken the permutation into disjoint
cycles. In this example there are three cycles, of lengths
3, 2 and 1 respectively.

An even more compact notation is to write it as:

(136)(25)(4).
The convention is that each symbol is mapped to the one
on the right except the last, which is mapped to the first.
We can make the notation more compact still by one
further convention. If it’s clear on what set the
permutation is operating we may omit cycles of length 1.
So (1 3 6)(2 5)(4) can be abbreviated to just (1 3 6)(2 5).
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Any symbol that’s not present is assumed to be fixed (that
IS, mapped to itself).

There’s just one tiny problem with this. The
identity function fixes every symbol and if we omitted
cycles of length 1 we’d have a blank space! For the
special case of the identity permutation we use the symbol
.

Example 1: The function f: [8] — [8] defined by:
f(1)=2,12) =7,1(3) =4,1(4) =3,
f(5)=8,1(6) =6, f(7) =1,f(8) =5

IS a permutation. In cycle notation it’s written:

(127)(34)58).

What is the corresponding arrangement if we begin with

1,2,3,4,56,7,8?

The answer is: 7, 1, 4, 3, 8, 6, 2, 5. Remember that
if f(x) =y then what was previously in position x is how
in position y. It does not mean that card labelled x is in
position y.

Example 2: If f is the permutation denoted by the cycle
notation (1 9 4 6)(2 5 3) this means that f(9) = 4 (next on
right), f(3) = 2 (last in cycle maps to first); f(7) = 7
(omitted symbols are fixed).

The system of notation just described is called
cycle notation. It reveals a good deal about the structure
and properties of a permutation — much more easily than
with a table of values.
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CYCLE NOTATION RULES
(1) The numbers represent positions not what is currently
in that position.
(2) Each symbol is mapped to the one on its right except
the last in each cycle which is mapped to the first.
(3) Fixed symbols (cycles of length 1) are omitted.
(4) The identity permutation is denoted by 1.

In addition to these rules there are some optional
conventions. For a start, if the symbols are single digits
we may omit the spaces between them and so write (123)
instead of (1 2 3).

The same permutation can be written in several
different ways. For example

(12345) = (23451) = (34512) = (45123) = (51234).

It’s only the cyclic order that matters and so the
symbols in any cycle may be permuted cyclically to bring
any one of them to the front. If the symbols are positive
integers we generally bring the smallest to the front. So,
although it 1sn’t wrong to write (31254), the preferred
notation would be (12543).

The cycles in the cycle notation are ‘disjoint’, that
is, they have no symbols in common. For this reason
they’re independent from one another and may be
rearranged in any order (as whole blocks). For example
(376)(18)(2549) = (2549)(18)(376) = (376)(18)(2549)
etc. We sometimes adopt the convention that cycles are
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arranged in order of their first symbol, writing the above
as (18)(2549)(376).

CYCLE NOTATION CONVENTIONS (Optional)
(1) Spaces are omitted where there’s no ambiguity (eg.
single digits).

(2) The smallest symbol in each cycle is brought to the
front.

(3) The cycles in a given permutation are arranged in
ascending order of their first symbols.

Using these optional conventions, each
permutation has a unique description.

§2.5. Cycle Structure

A cycle of length n is called an n-cycle. (Often 2-
cycles are called transpositions.) The cycle structure of
a permutation is its structure as a collection of disjoint
cycles and it’s expressed by replacing the symbols by x’s.
(The cycle structure of I is I itself.) For example, the cycle
structure of (15)(243)(59) is (xx)(xxx)(xx). Since we can
no longer arrange the cycles in order of their first
symbols, we generally arrange them in order of their
lengths so that we would write the above cycle structure
as (xx)(xx)(xxx).

The cycle structure of a permutation reveals a lot
about its properties. Permutations having the same cycle
structure have much in common as we’ll see. Let’s now
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use cycle structure to systematically explore the groups
Sl, Sz, Sg and S4.

THE SYMMETRIC GROUP S

Shuffling a pack of 1 card isn’t very interesting!
The only permutation in S; is the identity, I.

THE SYMMETRIC GROUP S; Things aren’t much
better with 2 cards, but at least we can swap them.

S, = {I, (12)}.

THE SYMMETRIC GROUP S;3

Here’s where things start to get interesting. The
possible cycle structures are: I, (xx) and (xxx). With a 2-
cycle (xx) there are 3 x 2 = 6 ways of replacing the x’s by
two distinct elements of [3], namely (12), (13), (21), (23),
(31), (32). But (21) = (12) and so on, so we only get 3
distinct 2-cycles, not 6: (12), (13), (23).

Similarly while there are 3 x 2 x 1 = 6 distinct
symbols of the form (xxx) we again get repetitions. Since
the smallest symbol in a cycle can be brought to the front
we must divide by 3 in this case. So there are thus just two
3-cycles in Sz viz. (123) and (132).

Hence S; = {l, (12), (13), (23), (123), (132)}.

THE SYMMETRIC GROUP S4

The possible cycle structures on 4 symbols are:
I, (xx), (xxx), (xxxx) and the double 2-cycle (xx)(xx).
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There is of course only one identity permutation.
We get the number of 2-cycles by considering the fact that
there are 4 x 3 = 12 ways of filling in the x’s in (xx) but
since either symbol may be brought to the front, we must
divide by 2. There are thus 6 cycles of length 2. The

. 4x3x2
number of 3-cycles is sz 8 and there are
4x3x2x1
: Z a = 6 cycles of length 4.

The calculation is slightly more complicated when
we come to the double 2-cycles. There are 4! = 24 ways
of replacing the x’s by symbols in (xx)(xx). Of course we
must divide by 2 for each 2-cycle to take account of the
fact that (a b) = (b a). But, in addition, we must divide by
a further factor of 2 because of the fact that

(ab)(cd)=(cd)(abh).
The number of double 2-cycles is thus: % = 3.
x2x2
As acheck we notethat1 +6+ 8+ 6 + 3 =24,
The elements of S, are thus:

| (12) (13) | (14) | (123) | (132)
(12)(34) | (23) 24) | (34) | (124) | (142)
(13)(24) | (1234) | (1324) | (1423) | (134) | (143)
(14)(23) | (1243) | (1342) | (1432) | (234) | (243)
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§2.6. The Prisoner Problem

There’s a curious problem that’s recently been
drawn to my attention. It’s based on the simple fact that
every permutation is a product of cycles.

There were ten prisoners in one large cell. Each had
his prison number tattooed on his arm. One day the prison
warden came to them and offered them a chance to be
released.

“I’m going to offer you the chance of freedom. In
the next room there are ten boxes, numbered from 0 to 9.
There are ten cards each containing a different digit and
each card will be randomly put into one of the boxes.”

“Tomorrow morning each of you will come, one at
a time, and you’ll be allowed to open any five of the
boxes. If you find the card that contains the last digit of
your prison number you’ll be given a green card.
Otherwise you’ll get a red card.”

“After you’ve received your card you’ll be sent to
another room so that you can’t communicate with those
that are left. Once you’ve all been given a card the
outcome will be as follows. If everybody has a green card
you’ll all be released. But if one or more has a red card,
you’ll all be shot!”

That night they discussed what their chances were
of being released.

“It’s pretty hopeless,” said one of them. “We each
have one chance in two of finding our own card. But for
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all ten of us to find our own card the probability is less
than one in a thousand. We’re all going to die!”

“Not necessarily,” said another prisoner. “I happen
to have studied group theory and I can suggest a way that
will improve our chances dramatically.”

“It’s worth trying. What would be our chances if
we followed your strategy?”

“Only about one in three, I'm afraid. But it’s a lot
better than one in a thousand.”

“So what do we have to do?” asked another.

“When you go into the next room tomorrow, look
for the box with the last digit of your prisoner number.
Open that box and the card inside will give you the
number of the next box to open. Keep going until you
return to the box you started with. The card that took you
there will have your own digit. You’ll get a green card.”

“Yes, but what if | look in five boxes and still don’t
find my number. I’d have to stop.”

“And they’d give you a red card and we’d all be
executed.”

“And what’s the chance of that?”

“About two in three. So even with my strategy
we’d only have about one chance in three of getting out
alive.”

“That’s worse than choosing randomly where it’s
one in two.”

“Ah, but this probability won’t depend on our
choices. It will depend on how the cards have been
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allocated. You won’t have to multiply one third ten
times.”

“How s0?”

“Well the cards in the boxes give a permutation on
the ten digits. Now every permutation is a product of
cycles. Suppose that all the cycles have length five or less.
Then everybody will get back to their own card by
opening no more than five boxes. In that case we’ll all get
a green card and we’ll all go free.”

“And if there’s a cycle of length six? Somebody’s
number is sure to be in that cycle and, if we follow your
strategy, he’ll not get back to his own number by opening
only five boxes. It only takes one person to get a red card
and we’ll all be shot.”

“Well, I’ve worked out the probabilities and the
probability of there being a cycle of length six or larger is
about two in three. So that gives us a chance of about one
in three of getting out of here alive!”

“But what if two of us have the same last digit?”

“That would make no difference. If there were no
cycles of length six or more we’d all get a green card,
even if we all had the same last digit.”

So they decided to follow the group-theorist’s
strategy and amazingly they all got green cards and were
released.

“Even though the odds were still against us we still
won with a probability of one in three. There must be a
God,” said one of them later.
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Perhaps God was looking after them, though not in
the way they had imagined. You see there were two prison
guards assigned to the task of setting up the room and they
decided to divide the cards into two groups. One had the
numbers 0 to 4 and he said to the other guard, “you put
yours in the back row and I’ll put mine in the front. The
prisoners won’t notice that it’s not completely random.”

Now the boxes in the front row were numbered 0O
to 4 and so the guards unwittingly ensured that there were
no cycles longer than five.

Here’s the mathematics behind the probabilities.
Without a strategy the probability of each prisoner getting
a green card would be %. So the probability of them all
getting green cards would be (%2)%° = 1/1024.

The distribution of the cards gives a permutation,
n,on{0,1,2,3,4,5,6,7,8,9,0}.
The number of cycles of length n is:

10.9....(10-n+1) 10!
n ~ n(10-n)!

with the reason for dividing by n being the fact that every
cycle of length n can start at any of its n digits. The
number of permutations containing a cycle of length n is:

n(1locfn)! x (10-n)! = 1TOI since the remaining 10 — n
digits can be permuted in (10 — n)! ways.

Let Pn be the probability of © containing a cycle of
length n. If = was indeed random, as promised, then
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10!/n 1

Pn="10r =n-
So the probability of = containing a cycle of length at least

1111 1
SIXI86+7+8+9+1O~0.6456.

So if the cards had been distributed randomly the
probability of all the prisoners being released would be
approximately 1 — 0.6456 = 0.3544, which would have
given them a fighting chance. But the careless of the
guards increased this probability to 1!

§2.7. Definition of Multiplication

The product of two permutations f, g on a set S is
the composition of the two functions in the order “first f
then g’.

Note that the usual convention with composition is
to multiply in reverse order, first g then f. So (fog)(x) =

f(g(x)), where fog denotes the resulting function. In the

context of permutations we write the composite as fg and
define it to mean that we first apply f and then g.

(f > 9)(x) = f(g(x)) while (fg)(x) = g(f(x)).

The convention for composition results from the
fact that we normally write functions on the left as f(x),
not (x)f and the definition of composition seems more
natural. The fog notation and the accompanying

convention is widely used in analysis but the left-to-right
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convention of fg is more widespread in abstract algebra
and it’s the one we’ll use here.

Permutations multiply in the order in which they are
written, from left to right.

If we’re given two permutations in cycle notation
and we want to multiply them, we can first convert them
to arrow diagrams, erase the centre column and combine
each pair of arrows into a single one. Then all we have to
do is to convert back to cycle notation.

Example 3:
Suppose a = (14)(256) and b = (13465).
Then ab = (162)(34).

a b ab
1 1 1 1 1
2 2 2 2 2
3 3 3 = 3 3
4 4 4 4 4
5 5 5 5 5
6 6 6 6 6

But while arrow pictures can assist us when we first
learn to multiply permutations they’re bulky and clumsy.
It’s better that we learn to multiply permutations directly
using cycle notation.
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Numbering the 27 cubes in a Rubik’s Cube
systematically, F=(1397)(26 84),
U=(119 21 3)(210 20 12),
FU=(11921397)(26841020122)and (FU)® =1

§2.8. Permutation Multiplication

Algorithm

The easiest way to describe the algorithm is to use
it on a particular example and explain in detail what we’re

doing.
(14)(256) x (13465) = (162)(34)
THINK WRITE

1 is the first symbol in the first cycle (1
1—4 by the first permutation then 4—6 | (16
by the second so 1—»6
6—2 and then 2—2 (absent so fixed) so | (162
6—2
2—5 and then 5—1 so 2—1 completing | (162)
the cycle
3 is smallest symbol not yet used (162)(3
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3—3 (absent so fixed) then 3—4

(162)(34

4—1 then 1—»3 completing another cycle

(162)(34)

5 is the smallest not yet used but looking
ahead we see that it’s fixed so we leave it
out

(162)(34)

all symbols are accounted for so stop

(162)(34) is
the answer

Here’s a second example with a more abbreviated

explanation:

(1463)(587) x (1374628) = (1675)(284)

THINK WRITE

(1463)(587) x (1374628) | (16

(1463)(587) x (1374628) | (167

(1463)(587) x (1374628)

(1675

(1463)(587) x (1374628)

(1675)

new cycle

(1463)(587) x (1374628)

(1675)(28

(1463)(587) x (1374628)

(1675)(284

(1463)(587) x (1374628)

(1675)(284)

Example 4:

The following is the multiplication table for S, the

group of permutations on 3 symbols:
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|
(123)
(132)
(12)
(13)
(23)

(123) (132) (12) (13) (23)

123)[132)] 12) | (13) | (23)

123) [ (132)| 1 | (23) | (12) | (13)

132)| 1 [@23)] 13) | 23) | (12)

(12)

13) | (23) | 1 | (123)](132)

(13)

23) | (12) |32 1 | (123)

(23)

(12) | (13) | (123)|(132)] 1

§2.9. Powers of Permutations

To raise a permutation to the m’th power using

cycle notation, simply jump forward, m steps at a time.
(Wrap around if you go past the end of a cycle.)

Thus (X1 X2 ... Xn)™ = (X1 Xm+1 Xom+1 ... )

Example 5: If a = (1426537) then a2 = (1257463).
Think of this as:

15452,

2—6—5,

537,

7—(wrap around)1—4,

4—2-6,

6—5—3,

3—7—1(wrap around).

Then ignore the intermediate stage.
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Example 6:
If a = (123456789) then a? = (135792468)
a® = (147)(258)(369)  a*=(159483726)

a5 = (162738495) ab = (174)(285)(396)
a’ = (186429753) a8 = (198765432)
a’=1.

Carefully examine the pattern. For example, with
a® we jump in steps of size 3. By the time we come to a’
we see that it’s equivalent (and easier) to count back 2
steps each time rather than 7 steps forward.

Clearly al° = a, a'! = a etc.

The inverse of a=(Xy X2 ... Xm)(Y1 Y2 ... Yn) ... IS

at= (X Xm ... X2)(Y1 Yn ... Y2) ...
We begin each cycle at the same point as before but go
around in the reverse order.

Example 7:
The inverse of (16243)(579) is (13426)(597)
For all permutations aa™ = | = a™a. This is because a™

undoes whatever a achieves.

§2.10. Order of a Permutation

The order of a permutation a, is the smallest positive
integer n such thata" = 1.

Example 8: The order of (162) is 3. More generally, the
order of an n-cycle is n.
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The order of (12)(345) is 6 because for its n’th
power to be the identity, n must be both even (to ‘kill off’
the 2-cycle) and a multiple of 3 (to ‘kill off’ the 3-cycle).
The smallest positive integer that is both even and a
multiple of 3 is 6, so the order of (12)(345) is 6. Note that
the order of (12)(3456) is 4, not 8.

Having explored these examples we can easily
supply the proof of the following theorem.

Theorem 1: The order of a permutation is the least
common multiple of the lengths of its cycles. ©

§2.11. Conjugates

If a, b are permutations on the same set then the
conjugate of a by b is defined to be b™ab and is
denoted by aP.

Note that b~*ab = a if and only if ab = ba. So if two
permutations commute, conjugating one by the other
doesn’t change it.

Example 9:
If a = (123)(45) and b = (16243) then
a® = btab = (13426).(123)(45).(16243) = (164)(35).
Notice that the permutation and its conjugate have
the same cycle structure. This is in fact always the case as
can be seen from the following theorem.
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Theorem 2: The conjugate of a = (X3 X2 ... Xy) ... by b is
¢ =aP = (b(x) b(x2) ... b(Xn)) ...

Note: we simply replace each symbol in the cycle
notation for a by its image under b.
Proof: We’ll show that ab = bc from which it follows
that b~tab = ¢. Now

ab(xy) = b(a(x1)) = b(x2) and bc(x1) = c(b(x1)) = b(x2).
Thus ab and bc have the same effect on the symbol x;.
Similarly they have the same effect on any symbol in the
cycle notation for a.

If z is any other symbol then it’s fixed by a and
so ab(z) =b(a(z)) = b(z). Since z is not present in the cycle
notation for c it’s fixed by ¢ and so

bc(z) = c(b(z)) = b(2).

We’ve thus shown that ab and bc behave
identically on all symbols and so ab = bc. ©%
Corollary: Two permutations are conjugate if and only if
they have the same cycle structure.

This theorem enables us to calculate conjugates
more easily than by carrying out the two multiplications.
To conjugate a by b we simply replace each symbol in the
cycle notation for a by its image under b.

Example 10: If a=(16)(275)(3948) and
b = (1724)(369), then
a® = (79)(425)(6318) = (1863)(254)(79).

Another application of this theorem is to find
conjugating permutations.
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Example 11: Ifa=(17)(2685) and ¢ = (1672)(35) find b
such that b™ab = c.
Solution: We write the two permutations underneath one
another so that the cycle lengths correspond.

a = (17)(2685)

c = (35)(1672)
We then look for a permutation that sends 1—-3, 75,
2—1, 66, 87 and 5—2. The remaining symbols 3
and 4 are mapped to the remaining possible images 4 and
8. We could map 3—4 and 4—8 or 3—8 and 4—4.
Suppose we choose the latter. Then b = (138752).

There are generally several possibilities for b.
Apart from the choice of images for 3 and 4 above we
could have written ¢ as (53)(6721) in which case we
would want b to send 1—5, 7—3, 2—6 etc.

Example 12: If a = (25)(1473) and ¢ = (46)(275) find b
such that b~tab = c.

Solution: No such b exists since a and ¢ have different
cycle structures.

Because conjugates have the same cycle structure,
they must have the same order. If a has order n then b~tab
has order n.

§2.12. Permutations in Poetry
Modern poetry, like modern music, seems to thumb
its nose at rules. But in the golden age of poetry there were
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complicated rhyming schemes and patterns that made
writing poetry more like a piece of engineering than a
creative task.

One of the most complicated poetic formats ever to
be devised is the sestina. It seems to have originated
around the twelfth century, but it’s still being written.

A sestina consists basically of six stanzas, each
with six lines. Instead of a rhyming scheme, each line
ends in one of six words. These six words occur at the end
of each line in all six stanzas, but in a different order. The
order is determined by the permutation (124536). To
conclude the sestina there’s a short three line stanza,
called the ‘envoy’, where the six words occur in the
middle and the end of the lines in a different order again.

Rudyard Kipling, the author of the Jungle Book,
wrote a sestina called Sestina of the Tramp-Royal where
the lines end with the words “all’, ‘world’, ‘good’, ‘long’,
‘done’ and ‘die’, permuted from one stanza to the next.

Speakin’ in general, | ‘ave tried ‘em all—

The "appy roads that take you o’er the world.
Speakin’ in general, | ‘ave found them good
For such as cannot use one bed too long,

But must get ‘ence, the same as | "ave done,
An’ go observin’ matters till they die.

What do it matter where or ‘ow we die,
So long as we’ve our “ealth to watch it all —
The different ways that different things are done,
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An’ men an’ women lovin’ in this world;
Takin” our chances as they come along,
An’ when they ain’t, pretendin’ they are good?

In cash or credit—no, it aren’t no good;

You ‘ave to ‘ave the ‘abit or you’d die,

Unless you lived your life but one day long,
Nor didn’t prophesy nor fret at all,

But drew your tucker some’ow from the world,
An’ never bothered what you might ha’ done.

But, Gawd, what things are they | "aven’t done?
I’ve turned my ‘and to most, an’ turned it good,
In various situations round the world —

For’im that doth not work must surely die;

But that's no reason man should labour all

’Is life on one same shift — life’s none so long.

Therefore, from job to job I've moved along.

Pay couldn’t ‘old me when my time was done,

For something in my ‘ead upset it all,

Till 1 'ad dropped whatever "twas for good,

An’, out at sea, be’eld the dock-lights die,

An’ met my mate — the wind that tramps the world!

It’s like a book, | think, this bloomin’ world,
Which you can read and care for just so long,
But presently you feel that you will die
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Unless you get the page you’re readin’ done,
An’ turn another—Ilikely not so good;
But what you’re after is to turn em all.

Gawd bless this world! Whatever she ‘ath done—
Excep’ when awful long I've found it good.
So write, before | die, “E liked it all!’

§2.13. Ringing the Changes

You’ve no doubt heard bells ringing out from
church towers or cathedrals, even if only in films, and you
probably haven’t given much thought to what’s going on.
You may have been
. vaguely aware that
" sometimes the bells play
recognisable tunes but that
B more often they play

B abstract music.
If you hear a tune then
you can be pretty sure that
S what you’re listening to is
a carllllon where the bells are controlled from a
keyboard, or perhaps a recording of a carillon. If the
rhythm seems regular but the notes appear random you’re
probably hearing English change ringing the musical
equivalent of permutations. (If both the notes and the
rhythm sound really random, with bells clashing
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discordantly you’re probably listening to continental
ringing, or perhaps very bad change-ringing.)

Change ringing doesn’t in fact involve random
sequences, though to the untrained ear they may appear
random. In the tradition of English change ringing the
sequences are generated with mathematical precision.

The conventions of English change ringing (the
style we hear in Australia) are a result of the way the bells
are hung and the laws of physics.

You must understand that the normal rest position
for bells in the English style is with the mouth uppermost.
Each bell is attached to a wheel and a rope goes over the
wheel and drops down to the ringing chamber below.
Here you’ll find, if you’re able to go up into a church
tower, a team of ringers standing around in a circle,
pulling on the ropes. Each ringer controls just one bell,
and that’s a full time occupation! The upper end of the
rope goes round a large wheel connected to a huge bell
weighing many times more than the ringer himself.

By pulling on the rope the wheel turns and the bell
rotates a full 360 degrees. During the swing the clapper
strikes the bell and the note is heard. It takes about two
seconds for the bell to go full circle and it’s physically
impossible to make the bell swing much more quickly
than this without superhuman effort. And the only way to
make it swing more slowly is to hold it poised, balanced
in the mouth up position, and that’s very difficult to do
for more than a second.
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This rules out tunes, unless they’re played at a tenth
of their normal speed because most tunes have some notes
twice in quick succession. So, :
instead of tunes, change
ringers ring permutations.
Change  ringing  means
ringing all the bells in some
order followed by the same
bells in a different order.
Because of the physical
difficulty of changing the
natural time of the swing, a particular bell can’t change its
position in the sequence by very much each time. In fact
there are normally only three possibilities. It can ring in
the same position as before, or one position earlier, or one
position later. This means that one or more pairs of bells
swap places.

Of course this needs coordination. You can’t have
two bells politely saying to each other “no you go next”,
“no please, you go first”. It all has to be tightly controlled.
And this is done by the conductor who is himself one of
the ringers.

It would be totally unworkable if the conductor had
to schedule every single interchange, especially as they
have to also control their own ‘mighty beast’. So what has
grown up over the centuries are ‘methods’. These the
ringers learn. A method takes you through maybe a dozen
changes in a predetermined way. But every so often the
pattern comes to a point where a call can be made. At

s T
I

|
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these points the conductor may call out “bob” or “single”
which means that a different interchange is used from
what would normally be the case. So the ringers follow a
set pattern, appropriate to the method, but at certain stages
they have to be on their toes (sometimes quite literally)
ready for a ‘bob’ or a ‘single’ to be called.

A ‘bob’ and a ‘single’ are special permutations that
are used to join together blocks of changes. Does the
conductor call one of these whenever he or she feels like
it? No it’s more complicated than that and here’s where
the mathematics comes in. There’s a convention in
English change ringing that a given arrangement should
never be repeated. Not just immediately following, but
never in the same piece of ringing!

There’s no aesthetic reason why a change that
occurs now shouldn’t occur again in half an hour’s time.
The listeners down in the street wouldn’t notice. It’s done
that way because that’s the way it’s always been done.
There’s a pride in getting it right.

Who keeps the score and cries foul if and when a
change is repeated? Usually the pattern of bobs and
singles is written out in advance. And it’s been known for
a band of ringers in a bell-ringing competition to be
disqualified after a couple of hours ringing because
someone has proved on paper that the ‘composition” must
have repeated a change, whether or not anyone noticed at
the time!

A full peal on 8 bells consists of 5040 changes and
this takes over 3 hours. During this time the seven lighter
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bells are rung in every one of the 7! = 5040 different
arrangements with no repetitions. The heaviest bell, the
tenor, stays in last place as a sort of “full-stop’. A quarter
peal runs through exactly one quarter of this number,
again with no repetitions.

To be a really good bell-ringer you need a good
knowledge of permutations. (Incidentally, if you’re dying
to show off the fact that you know that the technical term
for a bell ringer is ‘campanologist’ don’t! Not to a bell-
ringer. Bell-ringers never use the term and if you use it
you’ll make it clear that you’re not one of them.) Yet
while you get the occasional mathematician or computer
programmer in the bell-ringing fraternity, ringers are on
the whole a pretty normal cross-section of the community.
For centuries village churches in England have had their
tower bells rung by uneducated farm labourers and
shepherds who would have scratched their heads if you
mentioned “1-1 and onto functions”. Their knowledge of
permutations is confined to the context of their craft but
within that context their knowledge may be very highly
developed.

Let’s consider one of the simplest methods, Plain
Bob Doubles on 6 bells, with the heaviest bell (the tenor)
coming last in each change. Only the ‘front’ 5 bells are
permuted so a full peal will consist of 5! = 120 changes.
This will only take about 4 minutes and the method is
rarely performed on so few bells.

The method consists of alternately applying the
permutations a = (12)(34) and b = (23)(45). Ringers have
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different ways of remembering what they should do but
this is what it amounts to.

The ringers will begin by ringing ‘rounds’ many
times. This is where the bells are rung in order 1, 2, 3, 4,
5, 6 from the highest to the lowest. The repetition at this
stage doesn’t count. When the band has settled into a nice
rhythm the conductor will call “go Bob Doubles”. The
ringers follow the system they’ve learnt which amounts
to ababab...

Now ab = (13542) which has
order 5. So after 10 changes the
bells would come back to rounds
without having gone through all
120 permutations. Changing the
order of the a’s and b’s wouldn’t
help either because the group
generated by a and b is the
dihedral group of order 10. To
avoid this premature repetition the conductor might insert
a ‘bob’ in place of the fifth b. The bob for this method is
¢ =(34). This causes the ringing to go off on another track
of a new 10 changes.

So if a bob is called at the end of each set of 10
changes the pattern will correspond to the sequence
(ab)*ac(ab)“ac...

But (ab)*ac = (12453)(12) = (2453) so after 4 lots
of this pattern of 10 changes we’d come back to rounds
prematurely. So before this happens the conductor will
call ‘single’, which is a different permutation again.
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Bell-ringing is in no danger of dying out as in the
last seventy or eighty years there has been a resurgence of
interest in bell ringing around the world, and especially in
Australia. There are now 64 towers in Australia capable
of English bell ringing, 50 in the USA, 7 in NZ and many
hundreds in the UK.

They’re generally willing to show visitors how it’s
done. Contact the church or, if the door is open at the
bottom of the tower when they’re ringing, go on up. But
if all the ringers are occupied ringing, don’t even think of
interrupting them! And don’t expect to be able to have a
go yourself. It’s quite difficult and even dangerous for an
untrained person to just ring a single note. If you don’t
apply the correct tension the rope could fly about all over
the place. Even if you’re willing to ‘learn the ropes’ it
would be several months before you’d be allowed to do it
on your own.

§2.14. Disorder and Sorting

An inversion of a permutation 7 on the set [n] is a
pair of numbers whose order is reversed by 7, that is pairs
(i, ) where i < but n(i) > =(j).

The disorder of a permutation =t on [n] is A(x) =
the number of its inversions. It’s a measure of how mixed
up the arrangement 1 2 3 ... n becomes after the
permutation has been applied. The disorder of the identity
permutation is 0.

If the sequence is totally reversed and becomes

nn-1,..,2,1,
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the disorder is %2 n(n —1) since every one of the pairs is
out of order. For all 7€ Sy, 0 <A(m) <% n(n -1).

Example 13: Let = = (135)(24). This changes 12345 into
54123. (What was previously in position 5 is now in
position 1, etc.) There are 7 inversions: (1,4), (1,5), (2,4),
(2,5), (3,4), (3,5), (4,5) so A(n) = 7. For example, (1,5) is
an inversion because 1 comes before 5 in 12345 but 5
comes before 1 in 54123.

Apart from the identity, the permutations with the
smallest disorder are those which swap two adjacent
symbols and fix all the rest. These have disorder 1 and are
transpositions of the form s; = (i i+1). They’re called
simple transpositions.

Theorem 3: For all permutations 7 and all simple
transpositions s;, A(w (si)) = A(n) £ 1

Proof: Suppose n(a) =iand nt(b) =1 + 1.

If a < b then (a, b) is an inversion for A(x (si)) but not for
n and hence A(r (si)) = A(r) + 1.

Similarly ifa>b A(x (si)) = A(x) - 1. ©%

There are many algorithms for sorting arrays of
data on a computer. One of the simplest is known as
Bubble Sort. It’s not the most efficient of the sorting
algorithms, though it’s not too bad. What it has going for
it is that it’s extremely simple to describe and, more
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importantly for us, it gives us an important theoretical
result.

The name Bubble Sort arises from the fact that
‘lighter’ elements (those that come earlier in the
ordering), bubble up to the top as we continue to swap a
number with the one immediately above it until they all
reach their proper position.

BUBBLE SORT
To sort a set:
(1) FOR all i < n, IF the i’th and (i +1)’st are out of order
THEN swap them.
(2) IF a swap was made, GOTO (1) and do it again.
Otherwise END.

Example 14: BUBBLE SORT on 34521:
34521534251 534215-532415->32145-523145
521345512345 (7 swaps).

Theorem 4: A permutation 7 is the product of A(7x)
simple transpositions and no fewer.

Proof: Each swap in Bubble Sort reduces the disorder by
1. 0%

The following table gives the disorder of all the elements
of S4. Note that exactly half have even disorder while the
rest have odd disorder.
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EVEN DISORDER ODD DISORDER

T A(m) T A(m)
I 0 (12) 1
(123) 2 (13) 3
(132) 2 (14) 5
(124) 4 (23) 1
(142) 4 (24) 3
(134) 4 (34) 1
(143) 4 (1234) 3
(234) 2 (1243) 3
(243) 2 (1324) 5
(12)(34) 2 (1342) 3
(13)(24) 4 (1423) 5
(14)(23) 6 (1432) 3

§2.15. Odd and Even Permutations
The parity of a permutation = is:
P(r) = A(n) (mod 2).
If P(rr) = 0 we say that = is an even permutation.
If P(t) = 1 we call = an odd permutation.

Theorem 5: P(ab) = P(a) + P(b) (mod 2).
Proof: Let b = t; ... ty be a factorisation into k = A(b)
simple transpositions. (See Theorem 4.)
Then A(at)) =A(a) £ 1 and so
P(at)) = P(a) + 1 (modulo 2).
Hence P(ab) = P(a) + k (mod 2)
=P(a) + P(b). ©%
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Corollary: Inverses have the same parity as each other.
Proof: aa = 1 so if a and a™* had opposite parity then |
would have odd parity.

This theorem shows that odd-ness and even-ness of
permutations behave under multiplication like odd and
even numbers under addition. That is:

even x even = even
even x odd = odd

odd x even = odd
odd x odd = even

The fact that even x even is even, the inverse of an
even permutation is even and the identity permutation is
even means that the set of even permutations is a group
under permutation multiplication. We call this group the
alternating group of degree n and denote it by A,. It is
a subgroup of S,. Note that A; = {I} = S..

Example 15:
Aq = {l, (123), (132), (124), (142), (134), (143), (234),
(243), (12)(34), (13)(24), (14)(23)}

Theorem 6: Conjugates have the same parity as each

other.
Proof: P(g*hg) = P(g) + P(h) + P(g) = P(h) (mod 2).
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Corollary: Transpositions are odd.
Proof:
They’re conjugate to the simple transposition (12). ©%

Theorem 7: A cycle of length n is a product of n -1
transpositions.

Proof: (X1 X2 ... Xn) = (X1 X2)(X1 X3) ... (X1 Xn).

Corollary: Cycles of odd length are even and cycles of
even length are odd. © %

Example 16: (123456) is odd since its length is even;
(123)(45)(6789) is even [even x odd x odd]

Theorem 8: If n > 1 exactly half the permutations in S,
are even.

Proof: The map n— =(12) is a 1-1 correspondence
between the even and odd permutations so there’s the
same number of each. ©%

Corollary: If n > 1, the order of A, is %2 n!

§2.16. Permutation Puzzles

The Rubik’s™ Cube, one of the most famous
puzzles of all time, is just one of a class of puzzles that
involve permutations. The common feature is that there
are several pieces to be rearranged in a certain pattern by
a sequence of basic moves. In many of these puzzles the
engineering dictates what’s possible while in others the
limitations are imposed by rules.
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As a very simple puzzle consider the following.
Arrange 5 coins, one each of 5¢, 10¢, 20¢, $1 and $2, in
a row in ascending order of value from left to right. The
allowable moves are:

(1) swap the coins at each end;

(2) move the left-most coin to the right hand end.
The goal is to reverse the order of the coins.

This puzzle is not hard to solve without
mathematics but let’s analyse it using permutations. We
can label the five coins 1, 2, 3, 4, 5 and the problem is to
go from the arrangement 12345 to 54321. The
permutation that does this is g = (15)(24). This is our goal
permutation. The allowable moves can also be expressed
as permutations. Swapping the two ends is a = (15) while
moving the left-hand coin to the right is b = (15432). The
puzzle is solved once you have expressed g in terms of
a and b.

Now as can be verified, ab%abab*ab® = (15)(24) =
g. Never mind for now how we might find such a
sequence. The fact is that it’s a sequence of @’s and b’s
that achieves the goal. So if the coins are arranged in the
order 12345 and we carry out the basic moves according
to the recipe abbababbbbabbb we obtain the required
reversal. Use 5 coins, or five small scraps of paper, to
verify that this is indeed so.

Now I’'m not claiming that this represents the
shortest solution. Perhaps you can find a shorter one by
trial and error. But at least this solution can be found by a
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systematic procedure that I’ll explain now in the context
of another puzzle.

§2.17. The Shunting Puzzle

In a certain shunting yard there’s a loop of track.
On one side of the loop there’s a turntable. This turntable
can only operate with four carriages. It isn’t big enough
to accommodate more than four and for some mysterious
reason (imposed to keep the puzzle from becoming
trivial) it will not operate with fewer than four carriages.

On this loop of track there’s a train consisting of an
engine followed by six carriages and a guard’s van at the
end. The engine and guard’s van each count as a carriage
for the purpose of the turntable rule.

The problem is to interchange the engine and the
guard’s van while keeping the six carriages between them
in the same order. This must be done only using the loop
of track and the turntable. Any number of carriages can
be taken around the loop at any time and the turntable can
be operated at any time so long as it has exactly four
pieces of rolling stock on it.

N

1(2(3|4]|5(6]|7(8

N
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This may not sound like a problem that’s likely to
arise in real life but there are some situations which
require a similar analysis but which are rather more
complicated to describe. You can simulate this puzzle by
sticking little labels on eight coins. The turntable can be
simulated by putting four fingers on four adjacent coins
and rotating. You may wish to attempt to solve the puzzle
before proceeding with the mathematical analysis.

For convenience | use the symbols 2, 3, 4,5, 6, 7 to
represent the six carriages with 1 representing the engine
and 8 the guard’s van. The initial arrangement is
12345678 and the arrangement we have to achieve is
82345671. The goal permutation is thus G = (18).

Now there are two basic operations at our disposal.
We can take one carriage from the left-hand side of the
train around the loop to the right-hand side. (We shall
consider the engine and guard’s van as carriages).

This operation corresponds to the permutation L =
(18765432) since the carriage that was previously in
position 1 ends up in position 8 and so on. Everything that
can be achieved with just the loop can be expressed in
terms of L. For example, taking a number of carriages
around at the same time is equivalent to taking them one
by one and so is expressible as a power of L. Taking a
carriage from the right-hand end around to the left is just
L.

The turntable gives an additional basic move. Let
T = (14)(23). Don’t forget that these symbols here refer
to the positions, not the numbers of the carriages that
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occupy them, and we can agree to number the positions
starting with the four on the turntable. Removing the
mathematically irrelevant setting of the puzzle we can
express it very simply as:

Generate G = (18) in terms of
L = (18765432) and T = (14)(23).

Our goal is to generate a particular 2-cycle. But let’s start
by trying to generate any 2-cycle.

Begin by randomly multiplying L’s and T’s
together in a trial-and-error fashion. The product TL =
(13)(48765). Now this isn’t our goal, nor is it even a 2-
cycle. But notice that because it’s a transposition times a
5-cycle, we can remove the 5-cycle by raising TL to the
fifth power: (TL)® = (13).

Of course we were lucky to hit upon a permutation
of the right shape so quickly. There’s a certain amount of
trial-and-error in the method. But its advantage over
completely mindless trial-and-error is that we widen our
goal from a specific permutation to a whole class of
permutations.

We still have to get from this 2-cycle (13) to (18),
the one we want. We do this by conjugation. Remember
that conjugation preserves the cycle structure. So
conjugating (TL)® by any permutation gives a 2-cycle. Of
course the conjugating permutation would need to be
expressible in terms of T and L.
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So we need to find a permutation, expressible in
terms of T and L, that takes 1 to 1 and 3 to 8. (Or we could
instead find one that takes 1 to 8 and 3 to 1.)

We’ll keep to the first case. We need a permutation
that fixes 1. Neither T nor L by themselves fix 1. But
notice that T takes 1 to 4 and L takes 4 back to 1 so TL?
= (285)(3746) fixes 1. But it doesn’t send 3 to 8. Not even
some power of it sends 3 to 8 because 3 and 8 are in
different cycles. Never mind, we might find another
possibility.

Notice that (TL)? fixes 1. In fact (TL)? = (47586).
Does this send 3 to 8? No, 3 and 8 are again in different
cycles. Remember 3 is fixed so it is in a cycle by itself.

So neither TL® = (285)(3746) nor (TL)? = (47586)
separately do what we want — but together they can.
(TL3®) sends 3 to 6 and (TL)™ sends 6 to 8. So we get
from 3 to 8 by ‘changing trains’ at 6.

The product of these permutations is (TL3)"}(TL)™
= (2738). This fixes 1 and sends 3 to 8 and most
importantly, it’s generated by T and L. We simply
conjugate (TL)® by (TL3®)"(TL)2 and this will produce a
T-L expression for our goal.

So (18) = [(TL®)H(TL)*1 ™ (TL)° [(TL®) H(TL) ]

= (TL)X(TL?) (TL(TLH(TL)

= (TL)?(TL®) (TLL3T LT LT
= (TL)?(TL®) (TL)’LSTL'T LT

= TLTLTL3TLTLTLTLTLLOTL/TLT.
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Convince yourself that it works by labelling eight
coins and carefully performing this recipe. As | said
before it may not be the shortest solution, but it is a
solution. And although it involved a certain amount of
trial-and-error it was intelligent trial-and error!

| have been using this
example for several decades in
my online notes and | like to think
that the following manufactured
puzzle was inspired by mine. This
one has 20 ‘carriages’. The turntable rule is dictated by
the design rather than simply as an arbitrary rule, because
there is only just enough space around the loop to
accommodate the 20 discs and so it’s only possible to
operate the turntable if it contains 4 discs.

§2.18. The 15-Puzzle

Another example of a puzzle where the basic
moves are dictated by the
mechanism is the so-called
1 2 a3 i 15-puzzle. I can’t take credit
for this one because |
b w6 W/ a8 remember it as a schoolboy
in the 1950s! A square tray
9 1101112 contains 15 small tiles,

numbered from 1 to 15,
13|14 | 15 arranged in a 4 x 4 array with

one spot empty. The tiles can
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slide horizontally or vertically into the empty position.
The goal is to get a particular pattern.

Because the pieces are slotted into each other they
can’t be removed from the frame so the only allowable
moves are those that are physically possible by sliding the
tiles into the empty place. What are they?

Clearly there are four basic moves L, R, U and D
where:

L = move atile left into the empty space,

R =right,
U = up and
D = down.

Various patterns were set as goals. For example if
the square is in some random starting configuration the
goal might be to obtain the numbers in order as in the
illustration. Of course the solution will depend on the
starting pattern, but it should be possible to express the
recipe as a long sequence of L’s R’s U’s and D’s.

What are these moves as permutations? Sliding a
tile in effect swaps that tile and the empty space next to it
and this suggests we should be treating it as a
transposition (xx). The trouble is that we have to permute
positions, not tiles, and so we can’t treat the empty space
as a dummy tile. The transposition (12) can’t be achieved
if both positions are currently occupied — only if one of
them is empty. Obviously this sort of conditionality is
unworkable.
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The way around this dilemma is to have the empty
space return to the bottom-right corner from time to time
and to record the permutation only at these stages. We are
therefore considering permutations on the remaining 15
positions.

So while we can’t consider L by itself as such a
permutation, the sequence RDLU can be. It rotates the
three tiles surrounding the bottom-right corner and gives
the permutation A = (11 15 12). Now it’s clear that
essentially the only basic moves that are possible are to
rotate the tiles around a rectangle that has the blank in the
bottom-right corner. These will be cycles of odd length
and so will be even permutations. So only even
permutations are possible. Engraved on the back of these
little plastic puzzles were some patterns to achieve. But
there was one pattern marked IMPOSSIBLE. The reason
why it was impossible is that it would require an odd
permutation. Of course we boys soon discovered how to
snap the tiles out of the frame using a pen knife and
reassemble them to the impossible pattern!

| remember that the first Rubiks cubes has stick-on
labels for the colours and my young son ‘solved’ the
puzzle very quickly. Unfortunately he wasn’t all that neat
in sticking the labels back on and so it was pretty obvious
how he had solved it.

The key to solving most permutation puzzles is to

generate permutations that end up fixing most of the tiles.
A very useful way of doing this to use commutators.
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These are expressions of the form X-1Y-1XY. The name
reflects the fact that X and Y commute if and only if their
commutator is the identity.

With the 15-puzzle, rotating the tiles around the
bottom right-hand 2 x 2 square gives the permutation A =
RDLU = (11 15 12). Although R, D, L and U are not
permutations as such note that this is the commutator
L*UILU. Another useful rotates the tiles anticlockwise
around the bottom two rows. Itis B = (LLL)*U(LLL)U.
=(9 1314 15 12 11 10). This may not seem very useful
permutation, but wait. If we calculate C = A'B1AB we
get C = (10 15)(11 12).

So we somehow get the right tiles to occupy
positions 11 and 12. Then, if we conjugate C by
permutations that fix 11 and 12 we can easily rearrange
the other tiles. The tiles in positions 11 and 12 will just
swap back and forth. If the pattern is possible the tiles in
those positions will automatically be the right way round.
If every other tile is in the right place but those in
positions 11 and 12 are the wrong way round this will
mean that the pattern is impossible.
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EXERCISES FOR CHAPTER 2

Exercise 1. Write the following permutations in cycle
notation:

(@) 1-3, 254, 355,41, 5-52;

(b) 14, 2—5, 353,42, 51,

(c) 152, 2—4,3-55,4-1, 5-53;

(d) 11, 255, 353,44, 552,

(e) 11, 252, 353, 44, 5-55;

(H) 1-2,2—1, 3—>3,4-5,5-4.

Exercise 2: Which of the following is not a permutation?
(@) 13,254,352, 4->1;
(b) 1-1, 24, 353, 41,
(c) 153, 252,31, 44,

Exercise 3: Which of the following permutations is
different to the other two.

(a) (1428)(375);

(b) (1824)(573);

(c) (753)(2814).

Exercise 4: Write down all of the permutations in Ss with
each of the following cycle structures:

(@) (xx); (b) (xxxx); (€) (xx)(xx);

Exercise 5: Write down all of the cycle structures in Sg
together with the number of each.
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[Do not list the permutations themselves. There are too
many!]

Exercise 6: Perform the following permutation
multiplications:

(@) (132) x (13); (b) (1423) x (1342);

(c) (12)(34) x (123); (d) I x (1253); (e) (12) x (34).

Exercise 7: Find the inverse of the following
permutations:

(@) (154)(263); (b) (17246)(35);

©1; (d) (12)(34)(56); (e) (15)(2354).

Exercise 8: If a = (253)(46) and b = (126) calculate the
following:

(a) ab; (b) (ab)™;

(©a (d) b

(e)atb?t; (f)blal

Exercise 9: Write down the orders of the following
permutations:

(@) (12345); (b) (12345)(78);

(c) (123456)(78);  (d) (12)(34)(56)(78);  (e) I;

(F) (15)(2354).
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Exercise 10: In each of the following cases find the order
of ab:

(@) a=1(123), b =(12);

(b) a=(123), b = (45);

(c) a=(123), b = (14);

(d) a=(123), b = (12)(34);

(e) a =(123)(456), b = (34)(56);

(f) a = (123)(456)(789), b = (34)(67).
[Note that in all cases, a has order 3 and b has order 2
yet the order of ab is different in all five cases. This
shows that there is no connection between the order of a
product and the orders of its factors — unless the factors
involve disjoint cycles.]

Exercise 11: Prove that there is no upper bound to the
order of the product of a permutation of order 3 with a
permutation of order 2.

Exercise 12: Find the largest order for any of the elements
of SlO-

Exercise 13: If a = (1234)(567) find the order of each of
the following:
(@)a?; (b)a% (c)a® (d)a* (e)a’

Exercise 14: Find a® = b™ab in each of the following
cases (use the shortcut to conjugate):

(@) a=(12), b = (2345);

(b) a = (13)(256), b = (23)(45);
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(c) a = (14)(25), b = (1325):
(d) a = (1325), b = (14)(25);
(e) a = (156), b = (156).

Exercise 15: Where possible find a permutation

b e Se such that a = ¢ in each of the following cases:
(@) a=(132)(45), c = (15)(234);
(b) a = (14)(23), c = (16)(24)(35);
(c) a=(12)(34), c = (13)(24);
(da=(14),c=1;
(e) a=(13), c =(13).

Exercise 16: Express each of the following permutations
as a product of transpositions (cycles of length 2): (a)
(15624); (b) (2546)(357); (c) I

Exercise 17: Which of the following are even
permutations? (a) (123456789); (b) (123456)(789);

(c) (123)(4567)(89); (d) (12)(345)(67)(89);

(e) (123)(456)(789).

Exercise 18: Express g = (123)(456) in terms of
a=(12) and b = (23456).

Exercise 19: Express g = (259)(37) in terms of
a=(12) and c = (123456789).
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Exercise 20:

(i)

(if)

(iii)
(iv)

(V)

If a = (142357) and b = (25) (47) find ab, a?, and
bab.

Prove that the group generated by a, b is the
dihedral group of order 12.

If (a) denotes the set of powers of a (this is called
the cyclic subgroup generated by a), find the
elements of (a).

If a = (123) (56) find the elements of (a) N As.

If a=(14) (253) and b = (123) (45) then find all the
even permutation X € As such that

a = x*bx.

If a = (12453), b = (23) and ¢ = (123) then express
cinterms of a, b.

[HINT: Write ¢ = (231) = (23)(21) = (23)(12).]
Prove that neither a nor b can be expressed in terms
of the other two.

Exercise 21: Where possible, solve the following
modified versions of the shunting puzzle. In each case
the term ‘carriage’ includes the engine and guard’s van:

(a) 6 carriages, 4 on the turntable;

(b) 5 carriages, 4 on the turntable;

(c) 7 carriages, 3 on the turntable.

(d) 8 carriages, 3 on the turntable.

[HINT: for (d): consider the algebraic expression
E = X1 X3 X5 X7 + X2 X4 X Xg.]
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Exercise 22: Take eight coins and label them the letters
DEARGRAN. Starting with the coins in this order and
using the two basic operations of the shunting yard
problem, obtain the arrangement ARRANGED.

Exercise 23: Solve the following permutation puzzle:

7 6 5
hole | 4
1 2 3

Start with seven coins and a grid of nine squares as
indicated in the following diagram:

Seven of the eight outside squares are each occupied by a
coin and the middle square represents a hole. The coins
may move around the edge of the hole, or a coin may
‘jump over the hole’. Jumping over the hole must be done
in a straight line only, either vertically or horizontally into
the empty square. The object of the puzzle is to produce
the arrangement:

SN

hole

112



SOLUTIONS FOR CHAPTER 2

Exercise 1: () (13524); (b) (1425); (c) (124)(35); (d)
(25); (e) 1; (e) (12)(45).

Exercise 2: (b) is not because both 1 and 4 map to 1 (not
1-1) and nothing maps to 2 (it is not onto).

Exercise 3: (a) = (c) (they only look different because the
cycles start in different places) but (b) is different since
under (b) 1—»8 while under (a) and (c) 1—4. In fact (b) is
the inverse of the other two.

Exercise 4:

(a) (12), (13), (14), (15), (23), (24), (25), (34), (35), (45);

(b) (1234), (1235), (1243), (1245), (1253), (1254),
(1324), (1325), (1342), (1345), (1324), (1325),
(1423), (1425), (1432), (1425), (1432), (1435),
(1523), (1524), (1532), (1534), (1542), (1543),
(2345), (2354), (2435), (2453), (2534), (2543);

(€)(12)(34), (12)(35), (12)(45), (13)(24), (13)(25),
(13)(45), (14)(23), (14)(25), (14)(35),
(15)(23), (15)(24), (15)(34), (23)(45), (24)(35),
(25)(34).

Note carefully that these elements have been listed in a

systematic order. This makes it much easier to ensure that

there are no duplicates, and more importantly, that

nothing has been left out. In each position we write down

the smallest possibility that remains. You should also
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count the number of permutations of each type and see if
you could have predicted that from the systematic
ordering.

Exercise 5:

Cycle structure (xx): There are 6 possibilities for the
first position and 5 remaining ones for the 2" position,
giving 6 x 5 = 30 possibilities. But each will have been
counted twice since (xy) = (yx). So there are 15
permutations with this cycle structure.

Cycle structure (xxx): There are 6 x 5 x 4 possible ways
of filling up the places but each occurs 3 times so the
number of permutations is w = 40.
6x5x4x3x%x2

2 x3
= 120 permutations with this structure. We divide by 2
for the 2-cycle and by 3 for the 3-cycle.

6x5x%x4x3
Cycle structure (xx)(xx): There are 5% 2x2 - 45
permutations of this type. We divide by 2 for each cycle
and we need to divide by 2 a third time to allow for the
fact that we’ll have still counted each permutation twice
by virtue of the fact that (ab)(cd) = (cd)(ab).
Cycle structure (xx)(xx)(xx): There are
6x5x4x3x2x1
2x2x2x%x6

Cycle structure (xx)(xxx): There are

= 15 of these. As well as dividing
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by 2 for each of the 2-cycles we need to divide by 3! =6
to take account of the fact that the three 2-cycles can be
permuted in any order without changing the permutation.
The following table gives all possible cycle structures and
the number of permutations of each type.

cycle structure calculation number

I 1 1

(xx) 6x5 15
2

(xxx) 6x5x4 40
3

(oxxx) 6x5x4x3 90
4

(o) | Bxbrddn2 144
5

(xxxxxx) 6x5x4x3x2x1 120
6

(xxxx)(xx) 6x5x4x3x2 90

4x2
(o) () | 6Bxxaxaxl 40
3x3x2
(xxx)(xx) 6x5x4x3x2 120
3x2
(xx)(xx) 6x5x4x3 45
2x2x2
(xx)(xx)(xx) 6x5x4x3x2x1 15
2x2x2x6
TOTAL 720
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Exercise 6: (a) (23); (b) (124); (c) (134); (1253); (e)
(12)(34).

Exercise 7: (a) (145)(236); (b) (16427)(35); (c) I; (d)
(12)(34)(56); (e) (15324). This is a trick question since
(15)(2354) is not cycle notation for a single permutation
because the cycles aren’t disjoint. Rather it’s the product
of two permutations and must first be simplified.
(15)(2354) = (14235) so the inverse is (15324).

Exercise 8: (a) (125364); (b) (146352); (c) (235)(46); (d)
(162): (e) (164235);

(f) (146352). Note that (ab)™ = b*a™t. This is always the
case.

Exercise 9: (a) 5; (b) 10; (c) 6; (d) 2; (e) 1; (f) 5. This is
a trick question because the cycles aren’t disjoint. When
simplified this permutation becomes (14235).

Exercise 10: (a) 2; (b) 6; (c) 4; (d) 3; (e) 5; (F) 9
Exercise 11: (123)(456) ... (3n—2 3n-1 3n)

x (34)(67)(9 10) ... (3n-3 3n-2)
=(12457...3n-23n-13n3n-3 3n-6 ... 3) which has
order 3n.

Exercise 12: 30. [Consider the cycle structure
(xx)(xxx)(xxxxx).]
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Exercise 13: (a) 12; (b) 6; (c) 4; (d) 3; (e) 12.

Exercise 14: (a) (13); (b) (12)(346);
(c) (34)(51) = (15)(34); (d) (4352) = (2435);
(e) (156).

Exercise 15: (a) (124); (b) none; (c) (23); (d) none; (e)
I. (Other answers are possible.)

Exercise 16: (a) (15)(16)(12)(14);
(b) (25)(24)(26)(35)(37); (c) (12)(12) (in fact I can be
considered as a product of zero transpositions).

Exercise 17: (a), (c), (e) are even. The others are odd.

Exercise 18: g = (12)(13)(45)(46).

Now (12) = a, (13) = a°, (45) = (14)(15)(14)
= ab’ab’al?, (46) = (14)(16)(14) = ab’ab’ab’ so

g = a b~tab b2ab? b~2ab® b—2ab? b-2ab? b~*ab* b~?ab?
= ab~tabtabtab~3ab2ab?

Exercise 19: g = (25)(29)(37).
Let d = ca = (23456789). Then (13) = ad, (14) = a®, etc
Now (25) = (12)(15)(12) = a a®’ a,
(29) = (12)(19)(12) =a ad " a,
(37) = (13)(17)(13)
=ad ad”° ad.
So g = ad-*ad’a adada dtadd®ad3d'ad
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= ad—%ad’a’dadtad‘ad*ad—ad

= a(ca)3a(ca) *a’ca?(ca)‘a(ca)‘a(ca)*a(ca)“aca

= aa‘cta'cta'clacacaca a’ca’a‘cacacacaca
aa‘cla*ctalctalctaca

= cta'cta'ctacacaca®cactacacacacacta‘c

a“‘ctalclaca
= ctactactacacaca’cactacacacacac tactac™
ac'aca since a’> = I.

Exercise 20:

(i) ab = (17)(23)(45), a? = (125)(374), b™tab = (175324)
= a! so the group generated by a, b is the dihedral group
of order 12 (note that a has order 6 and b has order 2).

(ii) (a) = {1, (142357), (125)(374), (13)(27)(45),
(152)(347), (175324)}.

(iii) The element a is itself odd, and so all its odd powers
will also be odd. However its even powers, 1, a and a*
will all be even, so (a) N As = {l, a2, a*}.

(iv) Writing a = (14)(253) and b = (45)(123) we might
consider the permutation (1452). This conjugates b into a
but it is odd, not even. There are altogether 6 ways of
writing b:
b = (45)(123) = (45)(231) = (45)(312) = (54)(123)

= (54)(231) = (54)(312) giving rise to just the
following possibilities for x:

(1452), (1453), (145)(23), (152), (153), (15)(23).
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Just the last 3 of these are even, so there are three
possibilities for x: (152), (153), (15)(23).

(V) ¢ =(23)(12). We have to now express (12) in terms of
a, b. We’ll conjugate b by something suitable to get (21).
Such a permutation would fix 2 and send 3 to 1. But, of
course, it must be expressible in terms of a, b. Now ab
= (13)(245) so (ab)® = (13) does exactly what we want.
This means that (ab)b(ab)® = (12) and so

¢ = b(ab)3b(ab)3.

Why can’t a be expressed in terms of b, ¢c? Simply
because both b, ¢ fix 4 and 5 and so any combination of
them would have to do likewise. But a doesn’t fix them.

And why can’t b be expressed in terms of a and
c? The answer in this case is that both a and c are even
permutations, and so anything built up from them would
also have to be even, while b is odd.

Exercise 21:

(a) a = (123456), b = (14)(23). Goal = (16).

Now ab = (13)(456) so (ab)® = (13).

We want to conjugate this to (16) and so we want a
permutation that fixes 1 and sends 3 to 6. Now a* maps 1
to 4 and 4 maps 4 back to 1 so ab = (2536) fixes 1. Well,
what do you know? It also sends 3 to 6.

So (a®b)~Y(ab)*a’b = (16).

(b) a = (12345), b = (14)(23). Goal = (15).
This is impossible since both a, b are even.
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(c) a = (1234567), b = (13). Goal = (17). We want to
conjugate (13) to (17) and so we want a permutation that
fixes 1 and sends 3 to 7. Now ab = (12)(34567) and so
(ab)? = (35746) fixes 1. It doesn’t map 3 to 7, but its
square does. So (ab)“*b(ab)* = (17).

(d) This is impossible, though the reason has nothing to
do with odd and even permutations.

Consider the algebraic expression E = X1 X3 X5 X7 + X2 X4 Xs
Xg. Both permutations a, b leave the value of E unchanged
and therefore it will be unchanged by anything generated
by them. But the goal permutation, applied to the
subscripts of E, would change it into

Xg X3 X5 X7 + X2 X4 Xg X1 Which certainly is different to E.

Exercise 22:
For convenienceput1=D,2=E,3=A,4=R,5=G,6
= R, 7 =A, 8 =N. Our goal permutation is g =
(185627)(34), although (185427)(36) would do just as
well because of the two R’s. We have to express this in
terms of a = (12345678) and b = (14)(23).
Now ab = (13)(45678) so (ab)® = (13). We can conjugate
this to produce other 2-cycles.
Our goal permutation can be expressed as g =
(18)(15)(16)(12)(17)(34). Even this last can be expressed
in a similar form by writing (34) = (13)(14)(13), so
g = (18)(15)(16)(12)(17)(13)(14)(13).

Of course, (13) is just b. We want permutations that

fix 1. Now (ab)? = (46857) is one such, but it doesn’t map
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3 to anything other than itself. Note that under a3, 1 — 4
and b sends this back to 4. Hence a%b = (258)(3647) fixes
1 and is a little more useful when it comes to 3. It maps 3
to 6, its inverse maps 3 to 7 and its square maps 3 to 4.
Hence (16) = (a%h)*(ab)®a®p, (17) = a’b (ab)®
(a®b)~! and (14) = (a®b)?(ab)>(ab)>.
For (18), (15) and (12) we need to use a combination of
a®b and (ab)>?.
Now ab sends 3 to 6 and (ab)? sends 6 to 8 (both fix 1)
so a*b(ab)? conjugates (13) to (18).
Hence (18) = (a®b(ab)?)™ (ab)® a®b(ab)?.
Similarly ab sends 3 to 6 and (ab)* sends 6 to 5 so
a’b(ab)* conjugates (13) to (15).
Hence (15) = (a®b(ab)*)™ (ab)® ab(ab)*.
The cycle (12) is a little more difficult, but we can use
(ab)? and a®b to get 3 to 2. We first map 3 to 6 by ab then
go from 6 to 8 by (ab)? and finally use a®b again to move
8 to 2. Hence (12) = [ab(ab)?a®b](ab)® [ab(ab)?ab].
Putting this all together we get:
g = [@b(ab)’)™ (ab)*a’b(ab)’] [(a’b(ab)*)™(ab)®
a®b(ab)*] [(a®b)*(ab)°a®b] x
[(ab(ab)?a’b)(ab)>(ah(ab)?a’h)] [ab (ab)® (ab)™]
b [(a®b)?(ab)°(a®b)?] b.
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Exercise 23:
Let R = (1234567), moving the pieces around the outside
let J = (1234), jumping over the hole. (After each move
we move he pieces so that the empty square reverts to its
original position.)
The goal is:
g = (17)(26)(35) = (17)(12)(16)(12)(13)(15)(13).
Now RJ = (13)(24567) so (RJ)° = (13).
We want permutations that fix 1.
Of course (RJ)? = (25746) fixes 1 and so does
R2J? = (35746). Using these together we can map 3 to 7,
2, 6 etc.
(17) = (RA?)(RI)¥(RA?)?;
(12) = (R2?(RI)I)YRIP(RP(RI)Z;
(16) = (RA?)(RI)®(RAA) 1,
(13) = (RY)’;
(15) = (RY?)Y(RJ)°R21.
Hence g = [(R2?)?(RJ)*R2J?)?] x
[((RPPP(RI) ) HRIP(RPP(RI) ] [(RV(RI°(R2?) ] %
[(RV*(RI) ) HRI°(RW*(RI) ] x
[(RI°] [(R¥?)H(RI)°RA? (RI)°].
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